Undefined 1 (2009) 1-5
10S Press

SPARQLES:

Monitoring Public SPARQL Endpoints

Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Pierre-Yves Vandenbussche ?, Jiirgen Umbrich b Aidan Hogan ¢, and Carlos Buil-Arandad

 Fujitsu (Ireland) Limited, Swords, Co. Dublin, Ireland
E-mail: pierre-yves.vandenbussche @ie.fujitsu.com

bVienna University of Economy and Business (WU), Austria

E-mail: jurgen.umbrich@wu.ac.at

¢ Centro de Investigacion de la Web Semdntica, Department of Computer Science, University of Chile, Chile

E-mail: ahogan@dcc.uchile.cl

d Centro de Investigacion de la Web Semdntica, Departamento de Ciencia de la Computacion, Pontificia

Universidad Catdlica de Chile, Chile
E-mail: cbuil@ing.puc.cl

Abstract. We describe SPARQLES: an online system that monitors the health of public SPARQL endpoints on the Web by
probing them with custom-designed queries at regular intervals. We present the architecture of SPARQLES and the variety of an-
alytics that it runs over public SPARQL endpoints, categorised by availability, discoverability, performance and interoperability.
To motivate the system, we gives examples of some key questions about the health and maturation of public SPARQL endpoints
that can be answered by the data it has collected in the past year(s). We also detail the interfaces that the system provides for
human and software agents to learn more about the recent history and current state of an individual SPARQL endpoint or about
overall trends concerning the maturity of all endpoints monitored by the system.

Keywords: SPARQL endpoints, Linked Data, Semantic Web, Web of Data

1. Introduction

Hundreds of Linked Datasets have been made pub-
licly available in recent years. These datasets span
a plethora of topics, varying from general-interest
datasets like DBpedia [14]' or GeoNames2, to more
niche datasets on topics like proteins® and Pokémon®.
Despite their diverse subject matter, each dataset fol-

lows the Semantic Web standards [17,12] for describ-

Thttp://datahub.io/dataset/dbpedia
Zhttp://datahub.io/dataset/geonames-semantic-web
3http://datahub.io/dataset/uniprot-databases
“http://datahub.io/dataset/pokepedia-fr

ing its content, and the Linked Data principles [4] for
making that content accessible on the Web. The goal is
not only to enable clients to access these datasets in an
automated and uniform way, but also to enable them to
combine content from multiple locations in a similarly
automated fashion.

To entice new consumers of their datasets, many
publishers began hosting public SPARQL endpoints
over their datasets such that clients can pose com-
plex queries to the server as a single request and re-
trieve direct answers. Hundreds of public SPARQL
endpoints have emerged on the Web in recent years,
where Jentzsch et al. [13] estimated that 68% of the
Linked Datasets in the 2011 LOD Cloud catalogue of-

0000-0000/09/$00.00 (©) 2009 — IOS Press and the authors. All rights reserved

2 SPARQLES: Monitoring Public SPARQL Endpoints

fered a link to a SPARQL endpoint. These endpoints
index content with a variety of topics and sizes and ac-
cept arbitrary SPARQL queries over the Web.
However, applications using these endpoints have
been slow to emerge. The convenience of SPARQL
queries for clients translates into significant server-side
costs maintaining such heavyweight query services.
Leaving aside more general questions such as qual-
ity (e.g., correctness of data) or usability (e.g., what
help is there for clients to create queries), a number of
SPARQL-specific infrastructural challenges remain.

First, AVAILABILITY is a concern: SPARQL end-
points can become overloaded by numerous clients
asking complex queries. Endpoints are often provided
on a not-for-profit basis, where the resources available
to host and maintain them may be limited and thus ser-
vices may go offline temporarily or even permanently
without warning. An application relying on a given
endpoint would inherit these underlying availability is-
sues; the situation can be even worse if an application
relies on multiple endpoints.

Second, DISCOVERABILITY is an issue: finding an
endpoint relevant to your needs can be quite difficult.
Even if you know the types of classes or predicates you
are looking for, or the keywords for the instances you
are particularly interested in, or even simply the do-
main that you wish to explore, finding all of the avail-
able SPARQL endpoints that might be relevant is not
a trivial task. Though de facto standards do exist for
describing and advertising datasets that, if used, could
help mitigate the discoverability issue, such descrip-
tions are often not provided by endpoints [6].

Third, the PERFORMANCE of endpoints can be
unpredictable. Evaluating a SPARQL 1.0 query is
PSPACE-complete [16]; the analogous complexity for
SPARQL 1.1 evaluation is at least as hard. Of course,
these types of worst-case queries are likely to be quite
rare [9], but even “PTIME queries” can require huge
amounts of processing to satisfy over even moderate
datasets. Thus the difficulty for a server of processing
a single SPARQL query varies from trivial to infea-
sible, with everything in between. Even estimating a
priori the cost of executing a query is hard. In addi-
tion, the performance of individual endpoints may dif-
fer for comparable workloads due to use of different
SPARQL engines on servers of varying capabilities.
Hence applications must cope with different levels of
latency if working with public endpoints.

Finally, INTEROPERABILITY is a problem: once you
have discovered some relevant SPARQL endpoints,

you may find that the endpoints support different fea-
tures of SPARQL to different degrees. In particu-
lar, some endpoints might support new features of
SPARQL 1.1 like aggregates and sub-queries, whereas
others might not.> This diversity in features supported
means that you may not have a uniform query inter-
face common to all endpoints against which you can
program the logic of your application.

We previously performed a once-off analysis of
427 public SPARQL endpoints listed in the DataHub
catalogue along the aforementioned dimensions of
AVAILABILITY, DISCOVERABILITY, PERFORMANCE
and INTEROPERABILITY, showing the extent to which
these are issues in practice [6]. The analysis painted a
mixed picture: while some endpoints performed well
in the tests and thus might be candidates for appli-
cation developers to rely on, many others performed
poorly or had gone offline.

As such, we foresaw the need for a public sys-
tem to track such aspects of endpoints over time. We
thus initiated work on the SPARQLES (SPARQL End-
point Status) system, available at http://sparqles.
okfn.org.® The system has been online for the past
year, during which time we have been making var-
ious refinements based on feedback collected from
the community. Meanwhile we have collected a year’s
worth of initial experimental data that can answer
novel questions about public endpoints: are they get-
ting faster, are more SPARQL 1.1 features being sup-
ported, are they becoming better described, etc.

This paper thus extends upon previous works [6,18]
and describes the current SPARQLES system itself in
detail: how it is constructed, what sorts of analytics it
performs, what queries it issues, what data it collects,
what kinds of conclusions can be drawn, what visuali-
sations are provided and what APIs are provided.

We begin with the high-level architecture.

2. SPARQLES Architecture
The SPARQLES system is designed to observe a

set of public SPARQL endpoints over time. Currently
SPARQLES is tracking all the endpoints listed in the

5Though not covered herein, one such issue is the non-standard
support for keyword search, which varies from engine to engine.

SSPARQLES is also a predecessor of an older system that
tracked only availability [18]: http://labs.mondeca.com/
sparqlEndpointsStatus/; l.a. 2015/01/30.

http://sparqles.okfn.org
http://sparqles.okfn.org
http://labs.mondeca.com/sparqlEndpointsStatus/
http://labs.mondeca.com/sparqlEndpointsStatus/

SPARQLES: Monitoring Public SPARQL Endpoints 3

DataHub catalogue’ found using the DataHub APIs;
we thus align the inclusion criteria of SPARQLES with
that of DataHub. SPARQLES performs a fixed set of
analytics against each listed endpoint at fixed intervals,
stores the historical results and allows them to be ac-
cessed or visualised through online interfaces.

The high-level architecture for observing the se-
lected endpoints is depicted in Figure 1, where we
show the offline and online parts of the system. The
offline parts are responsible for collecting information
about the endpoints. The online parts are responsible
for presenting the results to the clients of the system.
The main components are as follows:

Analytics (offine): responsible for performing analy-
sis over endpoints at regularly defined intervals,
thus producing the raw observational data.

Storage (both): offers persistence over the results of
the offline Analytics component and enables on-
line querying and aggregation.

A.P.l. (online): offers software agents a RESTful ap-
plication programming interface through which
to query key data about endpoints.

U.l. (online): offers human agents a user interface
with a mix of aggregate visualisations and per-
endpoint visualisations.

In Section 3, we describe the offline phase, and in
particular, the types of analytics we run; to help mo-
tivate these analytics, we present some research ques-
tions that can be answered from the data collected by
the system thus far. Thereafter, in Section 4, we de-
scribe the storage and online parts of the system, in-
cluding the types of interfaces that we provide for the
public to interact with the collected data.

3. Analytics

We now provide details of the offline phase: we de-
scribe the analytics performed by the system and give
some insights into the types of conclusions that can be
drawn from the data collected thus far.

3.1. Availability
From our previous experiments, we have found that

many endpoints have significant periods of down-
times [6]. Some downtimes may be temporary, caused

"http://datahub.io/; La. 2015/01/30.

Offline

¥

Analytics

2 Storage o

APl

Fig. 1. High-level System Architecture

by network failures, sporadic high server loads, engine
crashes, and so forth. Other downtimes appear perma-
nent, indicating that an endpoint is probably being dis-
continued. Anticipating downtimes or distinguishing
reliable endpoints from unreliable ones can be crucial
for many clients. Hence SPARQLES closely monitors
the historical availability of endpoints.

Availability analytics SPARQLES assesses the avail-
ability of each SPARQL endpoint on an hourly basis.
We define an endpoint as available if it can respond to a
simple SPARQL query with some compliant response.

To check availability, the system issues a generic
ASK query as follows:

ASK WHERE { ?s ?p 70 . }

Responding to this query should be trivial (is the index
empty or not?). As soon as a valid response (positive or
negative) is received, the system considers the request
successful and concludes that the endpoint is available.
However, some SPARQL endpoints cannot handle this
ASK query. For such endpoints, we try a second query
using the SELECT operation as follows:

SELECT 7?s WHERE { ?s 7?p 70 . } LIMIT 1

http://datahub.io/

4 SPARQLES: Monitoring Public SPARQL Endpoints

We deem any endpoint responding to either query with
any valid SPARQL response as suitable.

Availability results are then aggregated per endpoint
into a success rate for fixed time intervals to generate
uptime estimates at different levels of granularity; e.g.,
the last day, the last week, the last month. Clients can
access this information through various interfaces in
the SPARQLES system, which will be described later
in Section 4.2.

Data Analysis We have been monitoring the hourly
availability of endpoints since February 2011.3 As of
the end of November 2014, when we began to collate
our results, about ten million test queries had been ex-
ecuted. To motivate the collection of this dataset by
the SPARQLES system, we present two research ques-
tions that the corpus can help to answer.

Al: How has the number of (un)reliable public end-
points evolved down through the years?

To help initially answer this question, Figure 2
shows the evolving availability for endpoints span-
ning a period of February 2011 to November 2014,
grouped by monthly availability percentage (ticks are
bimonthly). As a global trend, we see an overall in-
crease in the number of endpoints year on year (down-
ward dips refer to endpoints that are explicitly deleted
from the DataHub catalogue).® We also see a growing
number of endpoints falling into one of two extremes
([0,5] and]99, 100]), with a more stable number of rel-
atively few endpoints in the aggregate |5,99] interval:
the majority of endpoints tend to either die off com-
pletely or to have availability in excess of 99%.

To a certain extent, endpoints going offline is to
be expected: many such endpoints were simply ex-
perimental in nature. Having characterised the extent
of this phenomenon, henceforth we filter dead end-
points from consideration and focus on 344 live end-
points that were available at least once during Novem-
ber 2014, which leads to our second question:

8In fact, this data collection pre-dates the modern SPARQLES
system currently described, where the first three years of data were
gathered by a predecessor system: http://labs.mondeca.com/
sparqlEndpointsStatus/; l.a. 2015/01/31.

%Interestingly, the large growth in the number of endpoints be-
tween July and August 2011 corresponded with the announcement
of an upcoming update of the LOD Cloud, resulting in increased sub-
missions to the CKAN/DataHub catalogue: http://lists.w3.
org/Archives/Public/public-10d/2011Jul/0059.html;
l.a. 2015/01/29.

550
500 HmE199, 100]
450 11 195,99

400 H
150 || 175,95]

300 H
250
200
150
100

number of endpoints

Fig. 2. Evolution of number of endpoints falling into different avail-
ability rates between February 2011 and November 2014

A2: Considering only live endpoints, how has avail-
ability evolved?

Figure 3 removes dead endpoints from considera-
tion and normalises the y-axis as a ratio of overall
endpoints. The plot spans from November 2013 to
November 2014, in order to correspond with the time-
span found in later experiments (prior to November
2013 and the release of the modern SPARQLES sys-
tem, we only ran availability experiments). We see that
of the remaining endpoints, about 5% still tend to have
extended periods of downtime before coming back on-
line. Conversely, we see that generally between 40—
60% of these endpoints have availability in excess of
99% (i.e., “two nines” availability).

Note that in future sections, we likewise focus on
results for these 344 “live endpoints”.

Limitations One of the main limitations of the avail-
ability experiments are problems that are local to the
SPARQLES engine: the local server may experience
some downtimes or local network issues. In general
however, when errors known to be local are omitted
and when hourly results are aggregated into larger time
intervals, such as weeks or months, such local effects
should be smoothed out.

3.2. Discoverability

For a client, finding a SPARQL endpoint that con-
tains content relevant for their needs [15,6] and the
features that they require [6] can be challenging. The
goal of the discoverability analytics is to determine the
degree to which endpoints offer descriptions of them-

http://labs.mondeca.com/sparqlEndpointsStatus/
http://labs.mondeca.com/sparqlEndpointsStatus/
http://lists.w3.org/Archives/Public/public-lod/2011Jul/0059.html
http://lists.w3.org/Archives/Public/public-lod/2011Jul/0059.html

SPARQLES: Monitoring Public SPARQL Endpoints 5

1199, 100]
195,99

15,75]

endpoints (%)

Fig. 3. Evolution of ratio of endpoints per availability rate between
November 2013 and November 2014

selves and their contents using (de facto) standards:
to what extent an endpoint offers sufficient descriptive
meta-data such that it can be discovered by a client.
In particular, the SPARQLES system checks if a client
can automatically find, for a given endpoint:

1. Meta-data about the indexed datasets in the form
of VoID descriptions [2].

2. Meta-data about the capabilities and graphs in-
dexed by the endpoint in the form of SPARQL
1.1 Service Descriptions [21].

3. The type of engine powering the endpoint, some-
times mentioned in the HTTP header.

VoID Analytics The Vocabulary of Interlinked Data-
sets (VoID) [2] has become the de facto standard for
describing RDF datasets (in RDF). The vocabulary al-
lows for specifying, e.g., an OpenSearch description,
the number of triples a dataset contains, the number of
unique subjects, a list of properties and classes used,
number of triples associated with each property (used
as predicate), number of instances of a given class,
number of triples used to describe all instances of a
given class, predicates used to describe class instances,
and so forth. Likewise, the description of the dataset is
often enriched using external vocabulary, such as for
licensing information.

If VoID descriptions were widely available for
SPARQL endpoints, a client could leverage them to
discover endpoints with potentially relevant content.
SPARQLES thus tracks for which endpoints such de-
scriptions are available in a discoverable location.

Given a SPARQL endpoint URL as input, the sys-
tem checks in two locations for a VoID file. The first

location is that constructed from the Well-Known URI
pattern http://{domain}/.well-known/void rec-
ommended for use with VoID, where {domain} is re-
placed with the fully-qualified domain name (FQDN)
extracted from the endpoint URL.!? Secondly, the sys-
tem checks if the endpoint has indexed its own descrip-
tion using the following query, where %%ep is replaced
with the URL of the endpoint:

PREFIX void: <http://rdfs.org/ns/void#>

SELECT DISTINCT 7ds

WHERE { ?ds a void:Dataset ;
void:sparqlEndpoint %%ep . }

SD Analytics Endpoint capabilities — such as sup-
ported SPARQL version, query and update features,
I/O formats, custom functions, and/or entailment regimes
— can be described in RDF using the SPARQL 1.1
Service Description (SD) vocabulary, which became a
W3C Recommendation in March 2013 [21]. Such de-
scriptions, if made widely available, could help a client
find public endpoints that support the features it needs
(e.g., find SPARQL 1.1 endpoints).

The service description for an endpoint is retrieved
by simply dereferencing the endpoint URI itself [21].
As such, the SPARQLES system performs a HTTP
GET request for an endpoint URI, follows redirects and
uses content negotiation to request RDF formats (viz.
RDF/XML, N-Triples, Turtle or RDFa).

Server Name Analytics A variety of options are now
available for SPARQL engines, including Virtuoso [7],
Sesame [5], 4store [10], etc. However, performance
and compliance across different vendors can vary quite
dramatically. Knowing which engine — or even which
version of an engine — powers a given SPARQL end-
point may be useful for (expert) clients to know which
version of a query to send. For example, in previous
works we found that certain analogous strategies for
processing joins in a federated setting worked well for
certain SPARQL engines but performed poorly or even
outright failed for others [3].

Unfortunately, neither VoID nor the SD vocabu-
lary provide terms for specifying an engine or ver-
sion number to a client. Hints are available, such as
scanning the frontpage or an error page for mention
of a fixed list of engines. However, when dereferenc-
ing the endpoint URL, the type of engine and the ver-
sion number is often (though not always) provided in

Ohttp://vocab.deri.ie/void/autodiscovery; La. 2015-
01-27.

http://vocab.deri.ie/void/autodiscovery

6 SPARQLES: Monitoring Public SPARQL Endpoints

the Server field of the HTTP header. Although not al-
ways provided — perhaps since it may require low-level
server configurations — this is the cleanest method we
have found to currently establish which implementa-
tion powers an endpoint without requiring hard-coded,
engine-specific heuristics.

Data Analysis To help motivate these analytics, we
discuss two questions that can be answered using the
discoverability data collected by SPARQLES:

D1: Are endpoints adding VoID and SD descriptions?

To answer this question, we analyse the meta-data
available for endpoints in November 2013 and Jan-
uary 2015 to see if anything has changed over the 14
months.!! We focus on 234 live endpoints that were
listed in both November 2013 and January 2015, for
which, we look in the various aforementioned loca-
tions for VoID and SD descriptions. We also look in the
VoID Well-Known location for SD meta-data and also
at the endpoint URL for VoID meta-data, since both
could be published together as a combined description.

Table 1 presents the results. In general, we see that
few descriptions were added for legacy endpoints. In
fact, we see a decline in the number of endpoints
offering VoID meta-data, particularly as part of the
index (the majority of these endpoints were on the
bio2rdf.org domain). We see that overall, the ratio
of the 234 endpoints with descriptions is quite low, and
that few return both flavours of meta-data.'?

Although few legacy endpoints added descriptions
of themselves, we found that of the 110 new end-
points coming online in those 14 months, 41 offered
SD meta-data and 15 offered VoID meta-data.

D2: Do endpoints change their underlying engine?

Taking the same endpoints on the same dates as be-
fore, we looked at the Server entry in the HTTP head-
ers and compared the breakdown of engine counts be-
tween November 2013 and January 2015 to see if there
was any growth in the popularity of a given engine.

Unfortunately, during paper writing, we found a problem in
the configuration of the discoverability analytics left behind after a
server migration, meaning that data for 2014 could not be included.
As such, we are limited to a once-off comparison in the results be-
tween November 2013 and January 2015.

2In one case where a VoID Well-Known file contained only
SD and not VoID, the cause was a redirect; see, e.g., http:
//sparql.openmobilenetwork.org/.well-known/void (la.
2015-01-29); which redirects to an endpoint.

Table 1
Changes in available meta-data from 2013 to 2015

Meta-data Location 2013 2015
Well-Known 51 53
Dereferencin, 8 8

VoID _ e
Direct Query 70 61
Any 89 78
Well-Known 6 9

SD Dereferencing 47 47
Any 53 54
Well-Known 6

Both Dereferencing 1 2
Any 21 13

Table 2

Changes in reported Server values in HTTP headers

Server 2013 2015
Apache 71 74
Virtuoso 75 72
— 25 36
Apache-Coyote 23 15
Fuseki 11 13
RDF: :Endpoint 0 1

The results are given in Table 2, where generic HTTP-
server entries are greyed out. We see two new types of
SPARQL engines being reported, but only with a sin-
gle entry: Sesame and RDF::Endpoint.

Looking through changes for individual endpoints,
35 endpoints changed the server-name value in the
HTTP response header: 5 systems provide a more spe-
cific server name (e.g., from Apache to Fuseki), 2 sys-
tems changed the underlying engine (from one RDF-
specific engine to another), 19 systems removed the
server entry, 4 systems added a server name, and 5 sys-
tems provide a more general name than before (e.g.,
from Virtuoso to Apache).

The general conclusion is thus that endpoints rarely
change implementation and that — based on incomplete
Server headers — the relative popularity of different
engines is quite stable, with Virtuoso the most popular,
followed by Fuseki.

Limitations SPARQLES only checks for the exis-
tence of meta-data, but does not attempt to validate the
meta-data itself, nor does it try to measure the com-
pleteness of descriptions. Additionally, VoID descrip-

http://sparql.openmobilenetwork.org/.well-known/void
http://sparql.openmobilenetwork.org/.well-known/void

SPARQLES: Monitoring Public SPARQL Endpoints 7

tions or engine information may be extracted from
other locations not checked by SPARQLES: however,
as per a client, we believe it is important to offer such
information in generic, discoverable locations.

3.3. Performance

SPARQLES runs a set of performance-related an-
alytics that aims to compare the runtimes of differ-
ent public endpoints for comparable queries from a
client’s perspective (i.e., including HTTP overhead).
Since we cannot control or know in detail about the
content of endpoints, for the purpose of comparability,
we must rely on generic queries that would execute in
a similar manner independent of the exact content in-
dexed by the endpoint. We test three fundamental as-
pects of a query engine: lookups, streaming and joins.

Lookup Analytics The goal is to measure the time
taken to perform an atomic lookup (according to differ-
ent triple patterns). The query template is as follows:

ASK {<x> ?p 7o}

In this case, <x> is replaced with an arbitrary IRI
that is not expected to exist in the remote data (a
lookup still needs to be performed to ensure this).

Since in the above example the subject is set, we
call it an ASK; query. We also run ASK,, ASK,, ASK;),,
ASKo, ASK 0, ASK;p, versions of the query.

Given that an atomic lookup should be fast to exe-
cute, we expect that the performance of such queries
would be dominated by the HTTP overhead.

Streaming Analytics We measure the time taken for
an endpoint to stream a large result-set that should be
trivial to compute. The query is as follows:

SELECT * {?s ?p 7o} LIMIT 100001

Here we ask to stream 100,001 results. Since we
have found that public endpoints may limit maximum
result sizes to a “round number” — say 100,000 — we
ask for one hundred thousand and one results to de-
tect such a case. We also send queries for limits with
50,000, 25,000, 12,500, 6,250 and 3,125 results.

Join Analytics We use the following three queries to
measure a generic notion of join performance:

SELECT DISTINCT 7s 7q
WHERE {?s ?p 7o OPTIONAL {?s ?q <x>}} LIMIT 1000

SELECT DISTINCT ?7s 7q
WHERE {?s ?p 7o OPTIONAL {<x> ?7q ?s}} LIMIT 1000

SELECT DISTINCT 7o 7q
WHERE {?s ?p 7o OPTIONAL {<x> ?q 7o}} LIMIT 1000

These queries are designed — insofar as possible — to
be comparable across endpoints no matter what con-
tent is indexed. In these queries, <x> is an arbitrary
URI not expected to appear in the data. For example,
the first query requests that 1,000 unique subjects be
joined with a pattern that generates no answers: this
join must still be executed to check that ?7q is indeed
unbound. The result will return 1,000 distinct subject—
unbound pairs. While the first query looks at s—s joins,
the second performs an s—o join and the third an o—o
join. (These three join-types were the most common
found in analyses of real-world logs [9].)

Data Analysis The SPARQLES system schedules
performance analytics once a day for public endpoints.
In the following, we give two examples of questions
about the performance of public SPARQL endpoints
that can be answered using the data collected thus far
by SPARQLES spanning November 2013 to Novem-
ber 2014. In theory, we should have around 30 data-
points for every month. However, due to downtimes of
the SPARQLES system in this period, we have only
between 815 results for November 2013, December
2013 and March 2014. We consider these enough data-
points to aggregate and thus include these months.

The first question we pose is as follows:

P1: Is the performance of SPARQL endpoints improv-
ing with time?

One may expect that as underlying SPARQL im-
plementations and internet infrastructure improve, the
performance of endpoints would benefit over time.

Figures 4-6 provide the evolution of performance
for ASK, JOIN and LIMIT queries respectively. These
plots are generated as follows:

— Only live endpoints are included

— We only include response times for ASK queries
that return a correct answer (false), and for
JOIN and LIMIT queries where the number of re-
sults is within 99-101% of the expected total.

— For a fixed query (e.g., ASK;), we take a monthly
median value for each endpoint.

8 SPARQLES: Monitoring Public SPARQL Endpoints

— We filter endpoints without valid median values
for all months. The number of endpoints consid-
ered is showed in the legend on the figures.

— For each month, we choose the median from all
the endpoints as the final value shown.

We use median rather than mean values since the
performance data is often positively skewed [6]: me-
dian values are more robust to outliers (i.e., a few query
executions that take thousands of times longer to an-
swer than the typical case would skew the mean).

From the figures, we can observe that endpoints
struggle more for ASK,, ASK; and ASK;), than other
types of ASK queries, and that they struggle for JOIN,,
queries more than other joins involving a subject.
However, caution is required in comparing the differ-
ent series. In Figures 6, for example, we see that LIMIT
25000 is slower than LIMIT 50000, which is due to
the fact that a different set of endpoints is consid-
ered: while 105 endpoints consistently return enough
results to be counted in the LIMIT 25000 series, 25 of
these must be discounted from the LIMIT 50000 se-
ries, possibly due to indexing fewer than 50,000 triples
or implementing a results threshold [6]. Hence differ-
ent endpoints are being compared.

Rather than comparing across series, our focus is on
P1: does the performance of endpoints improve over
time? In general, a dramatic improvement in perfor-
mance is not evident from the data. Although some of
the ASK queries in Figure 4 show some variance from
month-to-month, the overall trend is stable. The JOIN
queries in Figure 5 do show some steady but minor
improvement over the course of the experiments. For
the LIMIT queries, there is a dramatic improvement
from the first month; however, these queries generate
the largest result sizes, and we think the slow initial
queries may be due to some network effects rather than
a major simultaneous improvement in the performance
of the engines powering the endpoints. '3

The second question we look at is as follows:

P2: To what extent are the response times for a given
query and a given endpoint consistent over time?

In other words, how often do query response times
for a given endpoint and query fall out of the scope

131t is tempting to suggest that the poor performance of the LIMIT
queries in May 2014, as visible in Figure 6, may have been due in
some part to the May 12 deadline of ISWC 2014. But this hypoth-
esis is admittedly not backed up by the other query types.

400 ~—o—
[72) PN
=) m--E B
= L, AN |
©) |
I v
=
§ 200 171 171 171] |
5 —o— psk 7 = pgk 7 e psk) 7!
171 171] _ o . 171
& —— askl Y —o— ask[7! e skl
- = pskl)
R
FIdEFifiiisid
month
Fig. 4. Evolution of ASK query performance
2,000
> 1,500
E
g
£ 1,000
=
S
3
(]
S 500
0

Fig. 5. Evolution of JOIN query performance

of “typical performance”? We take the median runtime
of a given query for a given endpoint as our indicator
of “typical performance”, and then look at how many
queries take 1.1x the typical median runtime, or 2 X
or 0.5x, and so on. Figure 7 presents such an analysis:

For a given query and a given endpoint, we com-
pute the median query response time over the
length of the experiment.

We compute the ratio of all response times against
that median for that query and endpoint.

We group all of these ratios into experiment type
(ASKIJOINILIMIT) and sort them.

We then plot the cumulative number of queries
with at least that ratio.

For example, we see in Figure 7 that ~50% of
queries were faster than median performance (and thus

SPARQLES: Monitoring Public SPARQL Endpoints 9

80,000‘ T I I T T
[178] [170]
—®— LIMIT, ,; —® LIMITg,q
, [113] [105]
60.000 | | —®~ LIMIT;y 30, —— LIMITj5 00 |
! (80] [63]

| LIMITs) 009~ LIMIT; 00

¥]

median time (ms)
&
(=)
k=)
(=3
S

“\ //./ N o

n
s

Q

T T :’ o
IS & A

< ¥ KX
\("lz, s < g

Fig. 6. Evolution of LIMIT query performance

~50% were slower), as must hold by definition. But
we also see that, e.g., in the ASK series, 10% of queries
were answered in less than 0.75x the median time;
conversely, we see that 90% of ASK queries were an-
swered within 1.75x the median runtime. Thus, if the
endpoints and experiments gave very stable results,
this would display as a line close to y = 1, whereas we
see in reality, e.g., that 1-in-5 JOIN queries will take
25% longer than expected, and so forth. In fact, in the
interest of readability, the graph is trimmed to show
a maximum of 2.5x the median performance: some
outlier queries had runtimes hundreds or thousands of
times longer than the median performance for that end-
point (the highest was 4,286 % for an ASK query).

In summary, we can see that about 70% of the
queries (0.1-0.8 in the x-axis of Figure 7) run within
about 0.75-1.25 x the median performance.

Limitations The performance results do not indicate
why specific queries are slow: is it due to the engine,
the HTTP overhead, the content indexed? In general,
we try to make the query load balanced irrespective of
the content and our goal is to measure the costs from
the perspective of a client who is concerned about the
“bottom line” of response times.

Perhaps one of the main limitations of the perfor-
mance results is again the issue of local effects. For ex-
ample, slow runtimes may be due to a busy network on
the SPARQLES end, or, conversely, endpoints on ge-
ographically close servers may be given an advantage.
Likewise in early months of the experiments, we ex-
perienced local downtimes; however, we resolved the
particular issues that caused these downtimes, result-
ing in more stable analytics in later months.

> T
2)
g :'I'
= o
3 ;”l’
=3 o
g R4
5 el
b L ———--H——;:-,—l*'di-b-—/ N
g —— T
g o
5 s
° 0.5 —/; |
§ —— ASK JOIN LIMIT

0 | I I I I I I
0 0.1 02 03 04 05 06 07 08 09 1
ratio of queries

Fig. 7. Stability of query performance

3.4. Interoperability

If available, the Service Description of an endpoint
should describe the query features and the version of
SPARQL that an endpoint supports. However, we have
seen that SD meta-data are often unavailable and, in
any case, an endpoint may claim to support features
that it does not, or may claim support for SPARQL 1.1
while only supporting a subset of new features.

SPARQLES thus offers analytics for interoperabil-
ity, whose goal is to verify which SPARQL features
— i.e. specific operators, solution modifiers, etc. — are
supported, gathering data about what SPARQL fea-
tures are available for the users of various endpoints.

Along these lines, SPARQLES takes a subset of
queries from the W3C Data Access Working Group
test-cases — designed to test all features from both ver-
sions of the standard — and issues them on a weekly
basis to SPARQL endpoints. We consider the test as
passed if a valid SPARQL response is returned. Since
we cannot control the content of endpoints, we can-
not verify that the returned response is actually correct;
hence we may overestimate compliance with the stan-
dard. We expect that if an endpoint does not support a
feature, an exception will be thrown (e.g., a parse ex-
ception). However, since an endpoint may time-out on
a given query, we may also underestimate compliance
where the feature may be supported but the endpoint
cannot answer the query instance provided.

SPARQL 1.0 Analytics First, the SPARQLES system
tests the endpoints for the core SPARQL 1.0 query
features that it supports. We issue endpoints a sub-
set of the Data Access Working Group test-cases for

10 SPARQLES: Monitoring Public SPARQL Endpoints

SPARQL 1.0,'* omitting syntax tests and focusing on
core functionalities.!®> This test-set checks a range of
aspects of the SPARQL 1.0 standard including query
types including SELECT, CONSTRUCT and ASK (we omit
DESCRIBE since it is an optional feature); filter fea-
tures, such as REGEX, IRI and blank node checks, etc.;
support for datatypes, such as numerics, strings and
booleans; support for graph selection features, includ-
ing FROM (NAMED) and GRAPH; and the solution mod-
ifiers, ORDER BY, LIMIT and OFFSET (DESC|ASC), as
well as DISTINCT and REDUCED modifiers.

SPARQL 1.1 Analytics SPARQLES also performs
tests on SPARQL 1.1 features using a test suite taken
from the W3C SPARQL Working Group.!® We omit
testing for SPARQL 1.1 Update since we (hopefully)
will not have write privileges for public endpoints. We
do not test entailment since, without knowledge of the
content, we cannot verify if results are entailed or not.

We first test support for aggregates, where expres-
sions such as average, maximum, minimum, sum and
count can be applied over groups of solutions (possi-
bly using an explicit GROUP BY clause). We then test
support for sub-queries in combination with other fea-
tures. Next we test support for property-paths, binding
of individual variables, and support for binding tuples
of variables (VALUES). We also check support for fil-
ter features that check for the existence of some data
(MINUS, EXISTS), and some new operator expressions
(STRSTARTS and STRCONTAINS for strings; ABS for
numerics). Finally, the last three queries test a miscel-
lany of features including NOT IN used to check a vari-
able binding against a list of filtered values, an abbrevi-
ated version of CONSTRUCT queries whereby the WHERE
clause can be omitted, and support for the SPARQL
SERVICE keyword.

Data Analysis SPARQLES collects data about inter-
operability on a weekly basis. To motivate this collec-
tion, we look at the following question:

I1: Is support for SPARQL 1.1 features increasing
with time?

SPARQL 1.1 became a W3C Recommendation in
March 2013 [11]; hence we are interested to look at
how support for new features developed through 2014.

nttp: //www.w3.org/2001/sw/DataAccess/tests/r2;
l.a. 2015/01/30.

15Queries available at
pyvandenbussche/sparqles.

Ohttp: //www.w3.org/2009/sparql/docs/tests/
data-sparqli1l/;lLa. 2015/01/31.

https://github.com/

Since there are 18 queries in total issued specifically
to test features new to SPARQL 1.1, in order to allow
more succinct presentation, we group these queries ac-
cording to their purpose, as follows:

FILTER Tests the following filter features and other
operators: IN, EXISTS, NOT EXISTS, MINUS,
ABS, CONTAINS, ABS, STRSTARTS.

AGGREGATES Tests the following aggregate features:
AVG, MIN SUM.

MISCELLANY Tests various features: BIND, MINUS,
property paths, SERVICE, sub-queries, and VALUES.

In Figure 8 we present the ratio of endpoints pass-
ing these groups of SPARQL 1.1 features. The time
interval for the queries was again November 2013
to November 2014, inclusive. The results were con-
structed as follows:

— We consider a query as passed by an endpoint in a
month if we received at least one valid SPARQL
response to that query in that month.

— We consider a group as passed if one of the
queries passes.

These conditions are perhaps quite “generous” to
endpoints, but we assume that an endpoint will not re-
move features, nor is it likely, e.g., to support one ag-
gregate but not another.

The results show that the level of support for each
group of queries is quite similar across all months, and
that support for the different groups is quite similar.
This may indicate that when an endpoint deploys a
SPARQL 1.1 engine, it tends to support a broad range
of new SPARQL features rather than incrementally
adding features. During August 2014, there was a vis-
ible increase in the amount of endpoints passing the
test (50% of endpoints returned results); we are uncer-
tain what caused this spike. Aside from that month, we
see that about 40% of endpoints have broad support for
SPARQL 1.1, and that during 2014, there was a subtle
increase in SPARQL 1.1 adoption, moving from about
40% to 45% of endpoints not returning errors.!”

Limitations As aforementioned, the main limitation
of these experiments is that we classify an endpoint
as implementing a specific SPARQL 1.1 feature if that
endpoint returns any valid response without throwing
an exception. If an endpoint times out, we will classify
it as not implementing that feature, and conversely, if

17 All the exceptions encountered are reported by SPARQLES for
individual endpoints/queries; details are available on the web site.

http://www.w3.org/2001/sw/DataAccess/tests/r2
https://github.com/pyvandenbussche/sparqles
https://github.com/pyvandenbussche/sparqles
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/

SPARQLES: Monitoring Public SPARQL Endpoints 11

1 T T T T

0.9 || —— [FILTER]
@ 0.8 H{ —=— [AGGREGATE]
g 0.7 || —e— [MISCELLANY]
& 06
5 0.5 |-
kS 0.4 —0—0— —
o
= 03|
s
02|
0.1
| | | | | | |
223D
~ > 2 >
SIS FEeSs

Fig. 8. Evolution of support for SPARQL 1.1 feature groups

it returns an incorrect solution, we will count it as sup-
porting that feature.'8

Another limitation was brought to our attention by
the community: the W3C test-case queries used by
SPARQLES, in their unmodified form, were poten-
tially very expensive for servers to run.'” Hence, in the
past month, we have refactored these queries to include
URIs that will not appear in the data. The results pre-
sented herein are based on the original queries.

4. Storage & Interfaces

We now describe the storage used by SPARQLES
to manage the data gathered by the experiments pre-
viously described, as well as the public interfaces
through which software agents and users can interact
with the data collected.

The SPARQLES system — incorporating both code
and data — is published under a Creative Commons
4.0 license (@), with code available from https:
//github.com/pyvandenbussche/sparqles and
data available from interfaces that will be described
later in the section.

18Strictly speaking, a query timing out is not compliant with
SPARQL 1.1; however, in spirit, we are more interested about
whether a feature is supported in general and not about if a specific
query instance runs or not.

191n fact, a member of the British Library told us in personal com-
munication that the hosting costs for their SPARQL services jumped
from around £1,000 to around £3,000 due to expensive queries being
issued, some of which were coming from SPARQLES.

4.1. Storage

Queries and other requests (e.g., discoverability
checks) are handled using Apache Jena (2.12.2).%° The
analytics presented — as well as checking DataHub
for updates to the endpoint list — are scheduled to run
at regular intervals using cron jobs. As tests are per-
formed, the results and metrics collected are serialised
using the Apache AVRO (1.7.5) library and sent to a
MongoDB instance for storage.

The MongoDB instance maintains 11 different col-
lections that, loosely speaking, represent different ma-
terialised views over the data collected:

— 4 collections store the “raw” version of the data
collected for the four analytical dimensions;

— 1 collection maintains the current list of endpoints
registered in the DataHub;

— 6 collections correspond to aggregated views of
the raw data as required by the User Interface.

The aggregate views are recomputed at regular in-
tervals using cron jobs: these views return the data re-
quired by the U.L in a single lookup and thus avoid
running aggregations while the user waits.

Over the last year, we observed a storage index
growth of 120 MB per month during data collection.

4.2. Application Programming Interfaces

SPARQLES provides a set of RESTful APIs that al-
low remote access to the data collection.?! The basic
design guide for these APIs is that they should allow
applications to get access to the same information hu-
mans have access to via the User Interfaces. Unlike
the high-level results used to motivate the data collec-
tion herein, the SPARQLES system offers low-level
information for individual endpoints. More precisely,
per Figure 9, various APIs offer access to endpoint-
specific as well as global analytical information.

Endpoint-specific functions The LIST and AUTO-
COMPLETE functions allow to locate SPARQL end-
points of interest. The INFO function provides compre-
hensive, up-to-date information about one endpoint in-
cluding its availability (for the last test, last day, last
week, last month and overall); its latest performance
details with the suspected result size threshold based
on the LIMIT queries mentioned in Section 3.3; its

2https://jena.apache.org; la. 2015/01/30.
2lhttp://sparqles.okfn.org/api

https://github.com/pyvandenbussche/sparqles
https://github.com/pyvandenbussche/sparqles
https://jena.apache.org
http://sparqles.okfn.org/api

12 SPARQLES: Monitoring Public SPARQL Endpoints

compliance with each of the 24 SPARQL 1.0 features
and the 18 SPARQL 1.1 features as part of the inter-
operability dimension; and its discoverability (server
name and (non-)existence of VoID and SD meta-data).

High-level analytical functions The analytical func-
tions provide a way to access an overview for each of
the four dimensions with respect to all SPARQL end-
points monitored in SPARQLES. The AVAILABILITY
function returns the list of endpoints with their associ-
ated uptime for the last test, the last day and last week.
The DISCOVERABILITY function provides informa-
tion of server name, and the accessibility of VoID and
SD meta-data for all endpoints. Similarly the INTER-
OPERABILITY and PERFORMANCE functions allow an
application to access respectively: the compliance to
SPARQL 1.0 and SPARQL 1.1 recommendations; and
the mean performance for ASK and JOIN queries.

Endpoint

E /API/ENDPOINT/LIST List All Endpoints API

ﬂ /API/ENDPOINT/AUTOCOMPLETE Endpoint Autocomplete API

E /API/ENDPOINT/INFO Endpoint Info API

Analytics

ﬂ /API/AVAILABILITY Availability API

ﬂ /API/DISCOVERABILITY Discoverability API

ﬂ /API/INTEROPERABILITY Interoperability APl

Performance API

E /API/PERFORMANCE

Fig. 9. List of APIs to access SPARQLES data

4.3. User Interface

The SPARQLES user interface — available at http:
//sparqles.okfn.org— offers an entry point for hu-
man users interested in the experiments. The interface
is implemented using various Javascript libraries, in-
cluding, e.g., Node.js?? and nvd3?? for rendering inter-
active visualisations.

The homepage offers “at-a-glance” aggregated views
of the four dimensions computed for all endpoints.
From there, a user has a number of possible navigation
steps, as illustrated in Figure 10. The user can navi-
gate to more detailed information about one of the di-

2http://nodejs.org/; La. 2015/30/01.
2http://nvd3.org/; La. 2015/30/01.

mensions wherein a summary of the results for all end-
points are provided in a list view. Otherwise, a user
can either use an auto-complete search function on the
endpoint URL, or click on an endpoint URL in a list
view, to find detailed, up-to-date information about all
four dimensions for a given endpoint. From the home-
page, the user can also find links for data dumps and
for API documentation.

— data

api

index —

Fig. 10. SPARQL Website sitemap.

5. Discussion

We now discuss high-level issues regarding the im-
pact, limitations and sustainability of SPARQLES.

5.1. Impact

One of the main goals of the system is to dissem-
inate timely information about the health of individ-
ual endpoints. The online SPARQLES site receives on
average about 500 unique visitors per month, 48% of
which have visited before in the year previous.

Another indirect goal of the system is to encour-
age endpoints to follow best practices: we would hope
that by tracking such metrics about endpoints, main-
tainers might be made aware of shortcomings with the
SPARQL services they offer and rectify these accord-
ingly. Though from personal communications with
some endpoint maintainers, we know that there have
been anecdotal instances of this, the results in this pa-

http://sparqles.okfn.org
http://sparqles.okfn.org
http://nodejs.org/
http://nvd3.org/

SPARQLES: Monitoring Public SPARQL Endpoints 13

per tend to suggest the effect has not been so dramatic:
for example, we have not seen a huge increase in VoID
or SD meta-data since the system came online.
Perhaps the most important impact of this work thus
far has been to formally acknowledge the kinks in
the current public SPARQL infrastructure, which has
helped motivate new lines of research. We can, for ex-
ample, point to works proposing Linked Data Frag-
ments — an alternative method for accessing Linked
Dataset aiming at high availability by reducing server
costs — which draws heavily upon the availability
statistics from our original analysis to justify why al-
ternatives to SPARQL are needed [20,19]. We can also
point to works like SHEPHERD [1], which uses the
statistics about query performance to generate more ef-
ficient query plans for public SPARQL endpoints, or to
works by Netahu et al. [8] on profiling datasets for the
purposes of enabling better discoverability, or indeed
to our own work on taking the weaknesses of endpoints
into account when creating federated query plans [3].

5.2. Limitations

For each of the analytics presented in Section 3,
we discussed a variety of specific limitations, refer-
ring, e.g., to the difficulty in distinguishing local prob-
lems from remote problems. There are also a couple of
global limitations of the system worth mentioning.

First, SPARQLES is subject to Goodhart’s law:

When a measure becomes a target, it ceases to be
a good measure.

An over-eager endpoint maintainer could, for example,
detect and artificially respond to SPARQLES queries
so as to improve how the endpoint is “rated” by the
system. In general, we know of no such example of
this happening and trust that it will not happen.

Second, as a more pragmatic issue, since we first put
the system online in November 2013, we have had var-
ious local reliability issues, where data were not col-
lected for certain weeks, where data were lost due to
server migration, and where the site itself was offline.
During this period, we have been resolving various is-
sues as they occur such that, although there are still
some known issues, we now believe that the system is
reaching maturity. Likewise, we have received a lot of
feedback from the community, which has been invalu-
able for improving the service in the past year.

5.3. Sustainability

SPARQLES is (generously) hosted by the Open
Knowledge Foundation, who have pledged continued
support for the system into the future.

One indirect but important aspect of sustainabil-
ity is the load that SPARQLES puts on the public
SPARQL infrastructure. For example, we discussed
before about how the original versions of the interop-
erability queries were causing a heavy load for a num-
ber of SPARQL services. To mitigate this, we run more
expensive tasks less frequently: while simple avail-
ability tests are done hourly, performance analytics
are run daily and interoperability tests are run weekly.
Likewise we have recently revised the interoperability
queries to make them less costly.

As the system has been maturing, we have started
to consider adding some new features as requested by
the community. One of the most popularly request fea-
tures is to have data collected by the SPARQLES tool
made available as Linked Data. Though we are (per-
haps ironically) reluctant to make a SPARQL endpoint
available, as a starting point, we are looking into cre-
ating Linked Data URIs for individual endpoints that
dereference to SPARQLES statistics about them. Other
requested features included offering an email notifica-
tion system to contact endpoint administrators when
their system was not available, or offering badges for
endpoints with high availability, and so forth.

6. Conclusion

In this paper, we have presented the SPARQL End-
point Status (SPARQLES) system for keeping track of
the health and maturity of public SPARQL endpoints.
We presented the high-level architecture, which con-
sists of an offline component for running tests over
endpoints, and an online component for providing vi-
sualisations and APIs for the collected results. We pre-
sented four dimensions of analytics that the system
runs over public endpoints, which we helped motivate
by presenting some key questions about SPARQL end-
points that the resulting data could be used to answer.
Thereafter, we presented some of the details of how
SPARQLES is implemented and the interfaces pro-
vided for human and automated agents to interact with
the underlying data collection. Finally, we discussed
some aspects relating to the high-level impact, limita-
tions and sustainability of the tool.

14 SPARQLES: Monitoring Public SPARQL Endpoints

In general, we believe that the SPARQLES sys-
tem provides the community with a unique window
into public SPARQL endpoints, offering a view that
has helped to inspire some novel research directions.
The system has shed light not only on some cobwebs
and cracks in the SPARQL infrastructure, but also
on the cream of the crop: those SPARQL endpoints
that are highly-available, readily-discoverable, highly-
performant and highly-interoperable.

Acknowledgements This work was supported by Fu-
jitsu Laboratories Limited, by CONICYT/FONDE-
CYT Project no. 3130617, by CONICYT/FONDE-
CYT Project no. 11140900, and by the Millennium
Nucleus Center for Semantic Web Research under
Grant NC120004. We would like to broadly thank
all of the members of the Linked Data community
who have offered their feedback and suggestions about
SPARQLES through the project page, mailing lists,
and personal communications. We would also like to
warmly thank the Open Knowledge Foundation for
agreeing to host the project.

References

[1] M. Acosta, M. Vidal, F. Flock, S. Castillo, C. B. Aranda, and

A. Harth. SHEPHERD: A shipping-based query processor

to enhance SPARQL endpoint performance. In ISWC 2014

Posters & Demons, pages 453-456, 2014.

K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. De-

scribing linked datasets. In LDOW. CEUR (Vol. 538), 2009.

[3] C. B. Aranda, A. Polleres, and J. Umbrich. Strategies for exe-
cuting federated queries in SPARQLI1.1. In ISWC 2014, pages
390405, 2014.

[4] T. Berners-Lee. Linked Data. Design issues for the World
Wide Web, World Wide Web Consortium, 2006. http://
www.w3.org/DesignIssues/LinkedData.html.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A
generic architecture for storing and querying RDF and RDF
schema. In ISWC, pages 54-68, 2002.

[6] C. Buil-Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche.
SPARQL web-querying infrastructure: Ready for action? In
ISWC, pages 277-293, 2013.

[2

—

[7] O. Erling and I. Mikhailov. RDF support in the virtuoso dbms.
In Networked Knowledge — Networked Media. Springer, 2009.

[8] B. Fetahu, S. Dietze, B. Pereira Nunes, M. Antonio Casanova,
D. Taibi, and W. Nejdl. A scalable approach for efficiently
generating structured dataset topic profiles. In The Semantic
Web: Trends and Challenges, volume 8465, pages 519-534,
2014.

[9] M. A. Gallego, J. D. Fernandez, M. A. Martinez-Prieto, and
P. D. L. Fuente. An empirical study of real-world SPARQL
queries. In USEWOD Workshop, 2012.

[10] S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and
implementation of a clustered RDF store. In SSWS, 2009.

[11] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C
Recommendation, March 2013.

[12] P. Hitzler, M. Krotzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph. OWL 2 Web Ontology Language Primer. W3C
Recommendation, Oct. 2009. http://www.w3.org/TR/owl2-
primer/.

[13] A. Jentzsch, R. Cyganiak, and C. Bizer. State of the LOD
cloud. Public Web-page, September 2011.

[14] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer,
and C. Bizer. DBpedia — A Large-scale, Multilingual Knowl-
edge Base Extracted from Wikipedia. Semantic Web Journal,
6, 2015. (to appear).

[15] H. Paulheim and S. Hertling. Discoverability of SPARQL end-
points in Linked Open Data. In Proceedings of the ISWC 2013
Posters & Demonstrations Track, Sydney, Australia, October
23, 2013, pages 245-248, 2013.

[16] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complex-
ity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[17] G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C
Working Group Note, June 2014. http://www.w3.org/TR/
rdfil-primer/.

[18] P. Vandenbussche, C. B. Aranda, A. Hogan, and J. Umbrich.
Monitoring SPARQL endpoint status. In ISWC Posters & De-
mos, pages 81-84, 2013.

[19] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D.
Vocht, M. V. Sande, R. Cyganiak, P. Colpaert, E. Mannens, and
R. V. d Walle. Low-cost queryable linked data through triple
pattern fragments. In ISWC 2014, pages 13-16, 2014.

[20] R. Verborgh, M. V. Sande, P. Colpaert, S. Coppens, E. Man-
nens, and R. V. de Walle. Web-Scale Querying through Linked
Data Fragments. In Workshop on Linked Data on the Web,
2014.

[21] G. T. Williams. SPARQL 1.1 Service Description. W3C Rec-
ommendation, March 2013.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/

