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Dear Reviewers, 
 
thank you very much for the detailed and very helpful feedback on our article. We have improved the 
article based on your feedback and are now sending you a revised version together with point-by-point 
explanations on how we addressed each of your comments. The explanations are found below. 
 
Best regards, 
Christian Bizer and Petar Petrovski 
 
 
Answers to the Reviewer’s Comments 
 
Review #1 
Submitted by Anonymous 
Recommendation: Major Revision 
 
Comment R1C1: This restriction has also been considered in (Zhu et al., 2016) ([39] in the paper), where 
the authors use a graph summarization approach to address the problem of partly missing values for link 
discovery.  
Answer R1C1: The authors of [39] (now [44]) were so nice to provide us with the source code 
implementing their approach. We ran the experiments from Section 5.3 using their code and now include 
the results of these experiments into the comparison. See results for CoSum-P in Table 5 and discussion 
in Section 5.3.  
 
Comment  R1C2: The authors then go on to present an appraisal of GenLink, pointing to its top 
performance above 95% F-measure. I do wonder whether this is necessary but if the authors want to 
keep this performance, they should point out on which datasets the performance is achieved as their 
performance claims contradict some of their later results. 
Answer R1C2: Thank you for pointing out this impreciseness. We have toned down the claim about top 
performance and also made clear on which datasets GenLink achieved a performance above 95% F-
measure. We now explicitly say that these datasets are all dense, which further motivates the 
argumentation line of the paper. The new sentence now reads: “The evaluation of GenLink on different 
dense datasets (e.g. sider-drugbank, LinkedMDB, restaurants) showed that the algorithm delivers good 
results with F-measures above 95\%[19]. As shown in the evaluation section of this paper, GenLink as 
well as other entity resolution methods run into problems once the data sets to be matched are not dense, 
but contain larger amounts of missing values.”  
 
Problem statement 
 
Comment R1C3:- Notation: e_{a, b} = {(p_i, v_i)} is actually incorrect. The model should read "Each e \in 
A \cup B can be represented as a set of attribute-value pairs ...". Please correct. 
Answer R1C3: This has been corrected in the paper. 
 



Comment R1C4: - Notation: e_{a, b}: You run different indexes on p and v in your definition (e.g., p_1, 
v_2). Hence, (p_n, v_n) cannot be correct. Please fix. 
Answer R1C4: Though, we do run separate indices for source and target entities, we don’t run separate 
indices for property names and property values. 
 
Comment R1C5: - "Find the subset M": What is M is subset of? Do you mean the set of pairs? 
Please specify. 
Answer R1C5: Thank you. We do mean a subset of the available set of pairs. This has been clarified in 
the paper. 
 
Comment R1C6:- Pairs of entities for which equality holds: e: e_a is not equal to e_b. 
owl:sameAs is an equivalence relation but not the equality relation. Please define clearly what you mean 
by equal (feel free to override the meaning thereof but please make sure it is formally sound). 
Answer R1C6:  As stated, by equality relation is considered to hold for entities which describe the same 
real world object(thing). The notation for the “equality relation” is abstracted to a similarity relation ~R.  
 
Comment R1C7: Find its complement U. Isn't finding M equivalent to finding U as M = (A \times B) 
\setminus U? 
Answer R1C7: Yes it is. This has been amended in the paper. 
 
Comment R1C8: Definition of R+: The two resources e_a and e_b are not equal. Please fix. 
Answer R1C8: This has been clarified in the paper. 
 
Comment R1C9: Definition of R+: Formally the definition is unsound, as there is no guarantee that you 
can learn a ML model which generated M and U such that R+ \subseteq M and R- subseteq U. Please fix. 
Answer R1C9: We do not provide any guarantees, we merely define the positive references as pairs of 
entities for which it is known that ~R holds. Given the definition of M, R+ has to be a part of M as well, 
therefore a subset. 
 
Comment R1C10: Equation (3): You use * and \times to denote the cross products. Please stick to one 
(preferably \times). 
Answer  R1C10: This has been corrected in the paper. 
 
Comment R1C11: - Linkage rule format: While the linkage rule description is appreciated, it still leaves 
space for interpretation. Please present a formal grammar for the linkage rules you use to ensure that the 
reader can reproduce your implementation if need be. 
Answer R1C11: The formal grammar of the linkage rule language is presented in the original GenLink 
paper [1] which introduces this language (Page 1640, Section “Semantics”). We have added a reference 
to the paper to Section 3.1 making it clear that the formal grammar is found in this paper. 
 
Comment R1C12: - The authors also claim that their linkage rule approach is "rather expressive" when 
compared to other grammars. What does this mean exactly? Can the author provide a formal 
interpretation of the statement? 
Answer R1C12: The rules are considered expressive because they “subsume threshold-based boolean 
classifiers and linear classifiers and by that allows for representing non-linear rules and may include data 
transformations which normalize the values prior to comparison”. This explanation been added to Section 
3.1 of the paper. We prefer not to formalize the expressivity of the language, as we believe the verbal 
description will be more suitable for most readers of the article. 
 



Comment R1C13: - Equation (5): Again, please stick to \times or *. 
Answer R1C13: This has been amended in the paper. 
 
Approaches 
 
Comment R1C14: The authors claim that GenLink could perform well if one removed the penalty for long 
specifications. Please add this extension of the orginal algorithm to your evaluation. 
Answer R1C14: We suggest that longer specifications have better chance of capturing nuanced 
differences between entities, however “removing (or loosening) the penalty has the potential to result with 
overfitted model and thus would not improve results”. This has been clarified on page 5 of the article. We 
also performed additional experiments in which we loosend and removed the penalty. Table 1 shows 
results of these experiments. The experiments indicate that the penalty only improves the results 
marginally for the WDC datasets. 
 

 Headphones Phones TVs 

 F-measure 

GenLink -- Penalty=0:05 0.799 0.712 0.748 

GenLink -- Penalty=0.01 0.795 0.712 0.750 

GenLink -- Penalty=0 0.795 0.709 0.715 

 
Table 1. Results of the GenLink penalty removal experiment  

 
Comment R1C15a: Group definition: The authors select the fittest individual. I guess they use the same 
initialization as with GenLink. 
Answer R1C15a: The initialization is the same as GenLink: “The initial group is populated with the fitness 
individual from the population generated by GenLink.” 
 
Comment R1C15b: Group fitness: Definition unclear. Please write an equation to clarify. 
Do you mean you compute the union of the outputs of the groups and measure the fitness thereupon? 
Answer R1C15b: Equations 6 and 7 have been added to the paper in order to explain the group fitness. 
 
Comment R1C15c: Constant c: How did you establish the relation between c and the population? 
Answer R1C15c: The relation is established based on the assumption that: “the larger the population, 
the bigger the chance for overfitting. Therefore, the constant should be higher for larger populations in 
order to penalise the fitness more.” 
 
 Comment R1C15d: Rule selection: The rules for matching are determined per pair. This means that all 
pairs from A \times B have to be compared. This is impractical for large datasets. Please report the 
runtimes of your algorithm in the experiments. 
Answer R1C15d:  In the group generation phase, we have to consider the whole reference sets (positive 
and negative) since we calculate the fitness from them.  

In the group application phase the  algorithm sets a rule per pair from a given set of unseen pairs. 
As of now the algorithm does A \times B comparisons, however any blocking approach can be applied to 
narrow the possible matchings. Silk, for instance, uses Miltiblock (http://wifo5-03.informatik.uni-



mannheim.de/bizer/pub/IseleJentzschBizer-WebDB2011.pdf) for reducing the number of comparisons on 
large datasets. In its current version, MultiBlock does not explicitly deals with sparse data, but it would be 
possible to adjust it using a similar penalty approach as GenLinkSA. As we have not yet implemented 
these ideas and not yet have a solid evaluation of them, we would prefer to leave this topic for a future 
publication. 

 
Comment R1C16: GenLinkSA. The formal specification of GenLink aggregations is unclear. The sets S*, 
N* and F^a are not defined. The meaning of the arrow notation under the sets is also clear. Please rewrite 
or specify. 
Answer R1C16:  “The first argument $S^*$ contains the similarity scores returned by the operators of 
this aggregation while the second argument $N^*$ contains a weight for each of the operators, finally the 
third argument $F^a$ represents the aggregation function that is applied to compute the similarity score 
$S$.” This has been clarified in the paper. 
 
Experiments 
 
Comment R1C17: - All results were averaged: Please provide standard deviation values. 
Moreover, given that you use genetic programming, please run statistical tests to state whether your 
average behaviour is significantly different from that of other algorithms. I would suggest running a rank 
test given that the experiments are ran 10x. 
Answer R1C17: We fully agree with the reviewer on both points. We have added the standard deviation 
values to Table 6. We ran a Friedman nonparametric rank test [2] that confirms the results on the WDC 
dataset.  We updated the paper accordingly. 
 
Comment R1C18:- Interestingly, approaches such as (Nikolov et al., 2012) suggest that they need no 
training data to perform well on many of these datasets. So does (Zhu et al., 2016). Please compare with 
these approaches. Moreover, please consider the datasets in (Zhu et al., 2016). 
Answer R1C18: We have extended the discussion of (Nikolov et al., 2012) and (Zhu et al., 2016) in the 
related work section. We have also added the results of CoSum-P (Zhu et al., 2016) to Table 9 covering 
the Amazon-Google dataset which as also used by (Zhu et al., 2016) and discuss the results on page 14.   
 
Comment R1C19:- The authors compare with EAGLE, FEBRL and MARLIN. However, both algorithms 
have already been shown to be lacking in previous works. Please compare with more state-of-the-art 
approaches, e.g.,  Zhu et al. (2016) and Nikolov et al. (2012). 
Answer R1C19: We run the CoSum-P approach as per  Zhu et al. (2016) since the authors prove that it 
is better than the CoSum-B. We compare with this approach on the WDC dataset. Of the datasets used 
by Zhu et al. (2016), we chose the Amazon-Google dataset, as the F-measure for this dataset - 0.666 
(see Table 6, pg. 13) shows it is the most challenging. As GenLink variants are a supervised approach, 
learning from examples improves on the performance of the CoSum-P. The results are confirmed by a 
Friedman test and a McNemar test. 
The fitness function used by Nikolov et al. (2012) estimates precision and recall based on an assumption 
that  "While different URIs are often used to denote the same entity in different repositories, distinct URIs 
within one dataset can be expected to denote distinct entities".  This assumption is violated by many real 
world datasets. For instance, the WDC dataset contains many offers for the same product all originating 
from eBay. As this assumption does not fit the WDC dataset and as the authors do not publish an 
implementation of their approach (and also do not react to email asking for the implementation), we 
decided to just discuss Nikolov et al. (2012) in the related work section, but do not perform experiments 
using the WDC dataset. 
 



Comment R1C20:- Why did you not consider removing the name property? 
Answer R1C20: Within e-commerce data, the product name property often contains beside of the actual 
product name additional vendor-specific key product features, which might not be covered by the other 
properties in the datasets. In order to take advantage of this information, we keep the name property. 
Comment R1C21: - How was the writing of the handwritten rules carried out? 
Answer R1C21: The rules were written by the authors of the paper using their human knowledge about 
the respective products as well as statistics about the profile of the dataset. Figure 1 below shows as an 
example the handwritten rule that was used for matching headphones. The rule implements the idea that 
if the very sparse properties html:gtin or html:mpn match exactly, the record pair should be considered as 
a match. If the numbers do not match, the rule should fall back to averaging the similarity of the properties 
html:model, html:impedence and html:headphone_cup_type giving most weight to model. We updated the 
article and now explain on page 10 how the rules were created. In order not to extend the length of the 
article too much, we explain the idea behind the matching rule in the article, but do not include Figure 1 
into the article which in our opinion does not add much over the verbal description of the idea. 
 

 
 

Figure 1. Example of a handwritten rule 
 
Comment R1C22:- The authors claim that EAGLE has *significantly* lower results. How was significance 
measured? 
Answer R1C22: The significance in the difference of the classifiers’ accuracy was confirmed using the 
McNemar’s test [3] with p<0.01. 

 
Comment R1C23: - By a significant margin => Significance test? 
Answer R1C23: We removed the significance claim here and now just say that headphones category 
proves to be an easier matching task. See page 13. 
 
State of the art 
 
Comment R1C24:- (Zhu et al., 2016) present an unsupervised approach for learning on RDF data. 
Please also consider the dataset they use. 
Answer R1C24: We have extended the discussion of (Zhu et al., 2016 [44]) in the related work section 
where we again highlight the good performance of CoSum-P on the Amazon-Google dataset. 
 
Comment R1C25:- (Nikolov et al., 2012) present a genetic unsupervised learning approach 



Answer R1C25: A discussion of (Nikolov et al., 2012 [35]) has been added to the related work section.  
 
 
References 
 
Comment R1C26: One of the first works in the Semantic Web on this topic was by Nikolov et al., 2012. 
Please add it. Moreover, please add a reference to (Zhu et al., 2016) (i.e., [39]) here as it achieves a 
remarkable performance. 
Answer R1C26: We added a discussion of both approaches to the related work section.  
 
Comment R1C27:- Some references are unclear to me, e.g., Supervised [29]. Ngonga Ngomo et al., 
2011 does not consider machine learning. This reference seems misplaced. 
Answer R1C27: [29] (now [33]) Ngonga Ngomo et al : Raven - active learning of link specifications, 2011 
introduces the RAVEN system that uses active learning to learn classifiers for link specifications.  
 
Comment R1C28:- LIMES [29]. The LIMES framework is described in (Ngonga Ngomo, 2012). 
Please replace the reference. 
Answer R1C28: The most cited reference for LIMES is [28] (now [32]): Ngomo, A.C.N., Auer, S.: Limes: 
A time-efficient approach for large- scale link discovery on the web of data 2011. This reference is also 
named in RAVEN [29] (now [33]) by Ngonga Ngomo et al. 2011 as the original publication covering the 
LIMES framework.     
 
Comment R1C29:- Combination of the two [17]. Can you please explain how [17] does not fall into 
supervised approaches? 
Answer R1C29: Thank you, this was miss referenced. The correct reference is: Isele, R., Jentzsch, A., 
Bizer, C.: Silk server-adding missing links while consuming linked data. In: Proceedings of the First 
International Conference on Consuming Linked Data.Volume 665. pp. 85–96 (2010). However, since we 
removed the mention of hybrid-approaches (see Answer R1C30) the reference was not added to the 
paper. 
 
Comment R1C30:- How does one combine supervised and unsupervised approaches? The two 
paradigms are mutually exclusive. 
Answer R1C30: With hybrid-approaches we meant approaches using semi-supervised learning. We 
removed the mention of hybrid-approaches from the paper as there are hardly any current systems in this 
category.  
 
Comment R1C31:- Please cover active learning in the state of the art. 
Answer R1C31: With RAVEN, Nikolov et al. and ActiveGenLink we refer to various systems in the related 
work section that use active learning. As active learning is not the focus of this article, we prefer not to 
add an extend discussion of active learning to the state of the art section. We also consider active 
learning of linkage rules on sparse data as a topic for further research and thus prefer to discuss it in a 
future paper once we have solid results on it.  
 
Comment R1C32:Typos 
- in the Linked Data => in the Linked Data Web? 
- same real world object => same real-world object 
- which is iteratively evolved => which is evolved iteratively 
- gtin number => gtin 
- footnotes after punctuation 



- while still be able => while still being able 
- low density properties => low-density properties 
- top fitness individual => fittest individual 
- thee => three 
- Beside of comparing => In addition to comparing 
- systems[5, 9] => systems [5, 9] 
- there have been identified 112 duplicate records => 112 duplicate records were identified. 
- main difficulty => main weakness 
- "pivoting around" => rephrase, algorithms are not mobile 
- MRLIN => MARLIN 
Answer R1C32: All typos have been resolved. Thank you very much for pointing them out! 
 
[1] Isele, R., Bizer, C.: Learning expressive linkage rules using genetic programming. Proceedings of the 
VLDB Endowment 5(11), 1638–1649 (2012) 
[2] Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of 
variance. Journal of the American Statistical Association 32(200), 675–701 (1937), 
https://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522 
[3] McNemar, Q.: Note on the sampling error of the difference between correlated proportions or 
percentages. Psychometrika 12(2), 153–157 (1947) 
 
  
 
Review #2 
Submitted by Anonymous 
Recommendation: Minor Revision 
 
Comment R2C1: The idea of searching for a family of rules is novel and intersting. The idea of adjusting 
the weights of the aggregation is intersting but simple, and not fully explored (eg, influence/sensitivity on 
beta parameter). The idea of combining the two approaches is original and interesting. 
Overall, originality is good. 
Answer R2C1: Thank you very much for your positive feedback on the originality of the approaches. 
 
Comment R2C2:  blocking: there is no mention of blocking, and it deserves at least some discussion as 
blocking is necessary for real world datasets, and blocking may also be affected by sparsity. 
Answer R2C2: The linkage rules are learned only using the positive and negative training examples and 
thus blocking does not play a role for learning the linkage rules. As you say, blocking is crucial for 
applying the rules to larger datasets. Silk uses Miltiblock (http://wifo5-03.informatik.uni-
mannheim.de/bizer/pub/IseleJentzschBizer-WebDB2011.pdf) for reducing the number of comparisons on 
large datasets. In its current version, MultiBlock does not explicitly deals with sparse data, but it would be 
possible to adjust it using a similar penalty approach as GenLinkSA. As we have not yet implemented 
these ideas and not yet have a solid evaluation of them, we would prefer to leave this topic for a future 
publication. 
 
Comment R2C3: How were the hyper-parameters tuned? Were they tuned for each dataset, or were the 
same setting used for all datasets? Tuned for each How were they tuned? What is the influence of the 
hyper-parameters on the results? 
Answer R2C3: We thank the reviewer for this comment. The following explanation was inserted into 
Section 5.2. In order to address the comment: “Hyper parameters are set using grid search. Even though 
grid search was run for each dataset, the resulting parameter values were the same for all datasets. The 



Table \ref{tab:avai_param} summarises the parameters that were used for GenLink and its variants in the 
experiments...”  
 
Comment R2C4: learning times: there is no discussion of the learning times of the algorithms. This is 
important as genetic algorithms are very slow. 
Answer R2C4: In order to address your comment, we have added a paragraph discussing the learning 
times and the used machine to Section 5.2. See beginning of page 11.  
 
Comment R2C5: hand-written rules: the paper includes a vague reference for the rules being written by 
an expert. This is too vague as a determined user can write very good rules. In fact a determined user 
can write decision tree rules to deal with sparse values. Was this done? Would be good to list the hand 
written rule for one of the datasets. 
Answer R2C5: We provide an example of one of the handwritten rules as part of the answer to Comment 
R1C21. In order to address your comment, we have added the following explanation to the article on 
page 10: “These rules are composed of up to six properties for each product category and were written by 
the authors of the article using their knowledge about the respective domains as well as statistics about 
the datasets. As an example, the handwritten rule that was used for matching headphones implements 
the idea that if the very sparse properties html:gtin or html:mpn match exactly, the record pair should be 
considered as a match. If the numbers are not present or do not match, the rule should fall back to 
averaging the similarity of the properties html:model, html:impedence and html:headphone_cup_type 
giving most weight to html:model.” 
 
Comment R2C6:  configuration of baselines and other systems: for replicability, the configuration of the 
other systems should be discussed and perhaps presented. 
Was the default configuration used, was there an attempt to optimize it, eg, for FEBRL and EAGLE. 
Answer R2C6: We used the default configurations for all systems. The parameter settings that were used 
for the baseline approaches are described in Section “5.2 Experiment Setup - Baselines”. 
 
Comment R2C7: sparsification: random sparsification may unfarily hurt the machine learning (ML) 
approaches as as sparsity in real work datasets is not random and ML could identify it. 
Answer R2C7:  This is clearly an important point and also the reason why we devote more space to 
datasets that are naturally sparse (such as the WDC benchmark datasets) over making originally dense 
datasets sparse (e.g. restaurants, movies, and drugs), which we only present shortly in Section 5.4. 
 
Comment R2C8: The paper mentions the importance of learning non-linear rules, and interestingly the 
main examples are linear, first example in fig 2 and fig 3, there is only one example of max 
Answer R2C8: We have evaluated linear-rules versus non-linear rules in the initial GenLink paper (Isele/ 
Bizer VLDB 2012, http://vldb.org/pvldb/vol5/p1638_robertisele_vldb2012.pdf). The results are found in 
Table 13 of this paper and show that the nonlinearity improves the performance by around 1% F1 in half 
of the cases. So nonlinearity is a useful feature, but clearly not the killer feature compared to other 
aspects of the method such a seeding or the specialized crossover operations (see Section 6.3 in Isele/ 
Bizer VLDB 2012). That nonlinearity is also useful in some cases in the context of sparse data is shown 
by the GenLinkComb rules depicted in Table 8 of the article, which use quite a large number of min() 
operators. 
 
Comment R2C9: Machine learning has developed many techniques to deal with missing values. 
Examples include methods that tolerate missing values and missing value imputation techniques that 
work well for numeric values and categorical variables with few categories. 



Answer R2C9: We would consider the different extensions of GenLink presented in this article to be 
examples of methods that aim at tolerating missing values. Our experience with using imputation 
techniques in identity resolution settings is quite disappointing as the imputed values often seem to 
confuse the systems more than they help. This is clearly different for other classification tasks. 
 
Comment R2C10: In traditional ML, a data scientist spends a significant amount of time developing 
features, selecting models and tuning hyper-parameters. The process leads to dramatic improvements 
over the first model that users try (eg, run SVM). A particular focus in this process is handling of missing 
values, through imputation, or by defining additional features (eg, a new indicator feature that specifies 
whether a value is present or not). While this process is not automated, a savvy data scientist can in a 
few hours achieve excellent results. 
Answer R2C10: We believe the identity resolution is a area in which humans and machines ideally 
complement each other. While humans with their domain knowledge are good at feature engineering, 
value normalization and labeling corner cases, machines are much better at testing different similarity 
functions, setting thresholds, and assigning weights.  
 
Comment R2C11: GenLinkSA uses a very simple formula to compute the score of a feature vector 
generated for a pair of records (using the beta parameter). It is likely that ML methods could learn a much 
better formula. This possibility makes me think about the significance of the contributions. 
It is true that the simple algorithm presented in this paper improves the state of the art, but it also 
suggests that more sophisticated methods could do better. As this type of tuning is common in ML, it 
should be mentioned in the paper. 
Answer R2C11: The question how much the additional expressivity of a deep neural network could 
improve the aggregation of feature vectors compared to the weighted nonlinear functions that we 
currently use is an interesting research question for future work. Referring again to the experiments that 
we presented in Section 6.3 of Isele/ Bizer VLDB 2012, the expressivity of the aggregation functions 
seams only one factor amongst others. Of course a ANN might find even (slightly?) better function, but 
the additional expressivity also raises the question whether there is enough labeled training data available 
within the specific use case in order to avoid overfitting. As labeling is often done by humans in data 
integration settings, training data is clearly an constrictive factor. 
 
Comment R2C12: The paper is clearly written for the most part, but does contain a number of 
grammatical errors that should be cleaned up. 
Answer R2C12: We did prove-read the paper and hope to have spotted all grammatical errors. 
 
Comment R2C13: The GenLink overview in page 2 is somewhat vague. The authors refer the reader to 
the GenLink paper, but the overview should be precise. The crossover paragraph is too short and 
imprecise, eg "selects one operator at random in a parit of linkage rules" ... does this mean one operator 
in each rule? Do they have to be of the same kind (I suppose so). The next sentence talks about 
aggregation operators so it is not clear whether crossover applies to all 4 types of operators. A small 
amount of work can make the crossover section clear. 
Answer R2C13: We thank the reviewer for improving the legibility of our paper. The section has been 
rewritten.  
 
Comment R2C14: Group application: is the sorting of the rules done statically based on an analysis of 
the training data, or is the sorting of coverage done for each pair being tested? The examples suggests 
the second option, please clarify. 



Answer R2C14: The sorting is done statically based on the coverage of reference set : “ The individuals 
in the input group are sorted by the percentage of coverage of the reference set. Sorting enables 
Algorithm 2 to find the more influential individual rules in less iterations.” 
 
 
Comment R2C15: Equation 3 is complex and not explained. 
Answer R2C15: Equation 3 is explained in the last paragraph of Section 2 and we have made the 
connection between the text and the equation more explicit: “The first argument *in the above formula* 
denotes a set of positive reference links, while the second argument denotes a set of negative reference 
links. The result of the learning algorithm is a linkage rule which should cover as many reference links as 
possible while generalising to unknown pairs.” 
 
 
Comment R2C16: Intuition of equation 4 is not provided, a sentence would be enough. 
Answer R2C16: The intuition is provided just before the formalism of the equation: “MCC [26] is defined 
as the degree of the correlation between the actual and predicted classes or formally” 
 
 
Comment R2C17: Equations 6 and 7, although precise seem overly complicated to express a simple 
idea. As it stands, these equations are hard to follow. 
Answer R2C17:   We have changed the paper to provide a better explanation of the formalism of the 
aggregation operator (now equations 8 and 9): “The first argument S* contains the similarity scores 
returned by the operators of this aggregation while the second argument N* contains a weight for each of 
the operators, finally the third argument Fa represents the aggregation function that is applied to compute 
the similarity score S.” This has been clarified in the paper. 
 
 
Review #3 
Submitted by Oktie Hassanzadeh 
Recommendation: Accept 
 
Comment R3C1: (1) originality: this might be the weakest aspect of the work given that the algorithms 
are extensions of the authors' previous work. However, in my view, the quality of the solution, its impact, 
and the thorough experiments with very promising results makes this an original contribution to this field. 
(2) significance of the results: The results are significant and have the potential to make a major impact 
on the state of the art in entity matching. 
(3) quality of writing: The paper is very well written. It presents a hypothesis and evaluates it very well. I 
found it relatively easy to understand and follow, in part thanks to the good and real examples used 
throughout the paper. It is also positioned reasonably well in the literature. 
Answer R3C1: Thank you very much for your positive feedback about our work! 
 
Comment R3C2: First (this one needs to be fixed prior to acceptance), Results in Table 6 show you use 
"gtin", but it is not listed as one of the properties in Table 2. 
Answer R3C2: Table 2 includes only properties that are filled in at least 10% of the records. The rule in 
Table 6 (now Table 7) that uses the gtin property has a coverage of 0.053 (see Column 4 of Table 7), 
meaning that it property is only filled in 5% of the cases. We added a note to the caption of Table 2 
explaining that low density properties are not included into the table. 
 



Comment R3C3:  The only major flaw I see in the evaluation, which is related to the above issue, is lack 
of proper "ID" columns/properties in the data sets. Do you believe this is common in practice? You need 
to clarify the issue with "gtin" but were you able to retrieve any identifiers for the data sets? Perhaps they 
were used to build the ground truth? 
Answer R3C3: The product descriptions that are contained in  the WDC Gold 
standard(http://webdatacommons.org/productcorpus/index.html) were crawled in the first quarter of 2016. 
The statistics of the WDC November 2015 extraction (http://webdatacommons.org/structureddata/2015-
11/stats/html-md.xlsx)  show that at this time the gtin property was only used on 1.5% of the  
schema.org/Product pages. This number has risen a bit in the meantime, but the main problem of identity 
resolution for product data on the Web is still that only a small fraction of the websites provide product 
identifiers (I guess in order to make price comparisons harder).  
We did not use the gtins to build the ground truth as the quality of the gtins found in web data is also 
rather low (e.g. some websites provide the same gtin number for all products they offer, likely due to 
errors in the script that renders their pages). 
 
Comment R3C4: If possible, provide more details on how the ground truth labels are derived. 
Answer R3C4:   We manually generated 1500 positive correspondences, 500 for each product category. 
For each product of the product catalog at least one positive correspondence is included. Additionally, to 
make the matching task more realistic the annotators also annotate closely related products like: phone 
cases, TV wall mounts or headphone cables, ear-buds, etc. Furthermore we created additional negative 
correspondences exploiting transitive closure. Two independent annotators in parallel annotated the web 
pages. In case of a conflict, a third annotator solved them. More details on the dataset are published in 
referenced previous work [39]. 
 
 
Comment R3C5: Another issue I can see in the evaluation is that you do not have a baseline designed 
for the scenario you are addressing. You have baselines (TF-IDF or paragraph2vec) but they are the 
solutions one would use for dense data, not sparse data, as with all the other related work you compare 
with. One simple baseline you could try is the idea described in Section 5.6 of the following paper: 
Hassanzadeh et al. Discovering Linkage Points over Web Data. PVLDB 6(6): 
444-456 (2013) http://www.vldb.org/pvldb/vol6/p445-hassanzadeh.pdf 
Basically, apply the linkage rules sequentially in the order of their expected "quality" 
("strength"/coverage). 
Could you also have a simpler adaptation of the original GenLink algorithm as baseline? One could also 
imagine a decision tree based approach. 
Answer R3C5:  Thank you for proposing this additional approach as well as the follow up conversation 
via email. We now discuss this approach in the related work [17]. Additionally, we implemented your idea, 
but found that applying the linkage rules sequentially in the order of their expected "quality" yield worse 
results than our two baselines, since only one pair (with highest similarity) of records of potentially one-to-
many can be selected as match, so we did not include this experiments into the article. Additionally, we 
provide decision tree- and random forest-based approaches as further baselines in the evaluation section 
(table 5).  
 
Comment R3C6: In Algorithm 2 description, you say Algorithm 2 takes input of algorithm 2 (you mean 
1?). 
Answer R3C6:  Thank you, this is corrected in the paper. 
 
 
Comment R3C7:  Can you specify the details of the handwritten rules mentioned on page 11. 



Can you show examples or link to a supplementary material? 
Answer R3C7: We provide an example of one of the handwritten rules as part of the answer to Comment 
R1C21. In order to address your comment, we have added the following explanation to the article on 
page 10: “These rules are composed of up to six properties for each product category and were written by 
the authors of the article using their knowledge about the respective domains as well as statistics about 
the datasets. As an example, the handwritten rule that was used for matching headphones implements 
the idea that if the very sparse properties html:gtin or html:mpn match exactly, the record pair should be 
considered as a match. If the numbers are not present or do not match, the rule should fall back to 
averaging the similarity of the properties html:model, html:impedence and html:headphone_cup_type 
giving most weight to html:model.” In order not to extend the length of the article too much, we explain the 
idea behind the matching rule in the article, but do not include Figure 1 into the article which in our 
opinion does not add much over the verbal description of the idea. 
 
Comment R3C8:  A strong aspect of this paper is making available the source code, but the code has 
zero documentation. This is hardly any better than not making any code available, since someone not 
familiar with your code can hardly run it. 
I strongly encourage you to write down at the very least a simple "getting started" guide that allows me to 
run, for example, your running example in the paper. This makes your paper truly repeatable, and allows 
me to apply it in my similar application scenarios (without having to contact you for further details!). 
Answer R3C8: Thank you for this very useful suggestion. We have fully implemented it and now provide 
a wiki page [1, 2] where we explain how to run the running example of the paper, and link to the Silk 
framework’s wiki on how to prepare your own matching projects. 
 
[1] https://github.com/petrovskip/silk.2.6-GenLinkSA/wiki 
[2] https://github.com/petrovskip/silk.2.6-GenLinkGL/wiki 
 
  
 
 
 
 



Semantic Web 0 (2016) 1–0 1
IOS Press

Learning Expressive Linkage Rules from
Sparse Data
Petar Petrovski, Christian Bizer
Data and Web Science Group, University of Mannheim, B6, 26, 68159 Mannheim
E-mail: petar@informatik.uni-mannheim.de, chris@informatik.uni-mannheim.de

Abstract.
A central problem in the context of the Web of Data, as well as in data integration in general is to identify entities in different

data sources that describe the same real-world object. There exists a large body of research on entity resolution. Interestingly,
most of the existing research focuses on entity resolution on dense data, meaning data that does not contain too many missing
values. This paper sets a different focus and explores learning expressive linkage rules from as well as applying these rules to
sparse web data, i.e. data exhibiting a large amount of missing values. Such data is a common challenge in various application
domains including e-commerce, online hotel booking, or online recruiting. We propose and compare three entity resolution
methods that employ genetic programming to learn expressive linkage rules from sparse data. First, we introduce the GenLinkGL
algorithm which learns groups of matching rules and applies specific rules out of these groups depending on which values are
missing from a pair of records. Next, we propose GenLinkSA, which employs selective aggregation operators within rules. These
operators exclude misleading similarity scores (which result from missing values) from the aggregations, but on the other hand
also penalize the uncertainty that results from missing values. Finally, we introduce GenLinkComb, a method which combines
the central ideas of the previous two into one integrated method. We evaluate all methods using six benchmark datasets: three of
them are e-commerce product datasets, the other datasets describe restaurants, movies, and drugs. We show improvements of up
to 16% F-measure compared to handwritten rules, on average 12% F-measure improvement compared to the original GenLink
algorithm, 15% compared to EAGLE, 8% compared to FEBRL, and 5% compared to CoSum-P.

Keywords: Entity Resolution, Sparse Data, Linkage Rules, Genetic Programming, Link Discovery

1. Introduction

As companies move to integrate data from even
larger numbers of internal and external data sources,
more and more structured data is becoming available
on the public Web. These data consist of HTML tables,
as well as Linked Data and Microdata annotations.
Establishing links between entities in different data
sources that describe the same real-world object takes
greater focus within even more application scenarios.
There exists an extensive body of research in entity
resolution. Additionally, a number of link discovery
tools have been developed, which generate RDF links
between entities in different data sets that represent
the same real-world object. For example, several semi-
automatic link discovery tools - such as Silk [19] or
LIMES [32] - have been developed. These tools com-
pare entities in different Linked Data sources based on

user-provided linkage rules which specify the condi-
tions that must hold true for two entities in order to be
interlinked. However, most existing approaches focus
on dense data [8, 19, 31, 32]. This paper sets an al-
ternative focus and explores learning expressive link-
age (matching) rules as well as applying these rules to
sparse data, i.e. data that contains a large amount of
missing values.

A prominent example of an application domain that
involves data exhibiting lots of missing values is e-
commerce. Matching product data from different web-
sites (e.g. Amazon and eBay) is difficult as most web-
sites publish heterogeneous product descriptions us-
ing proprietary schemata which vary widely concern-
ing their level of detail [30]. For instance in [38],
we analyzed product data from 32 popular e-shops.
The shops use within each product category (mobile
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2 Learning Expressive Linkage Rules from Sparse Data

phones, headphones, TVs) approximately 30 different
attributes to describe items. The subset of the attributes
that are used depends on the e-shop and even on the
specific product. This leaves a data aggregator that col-
lects product data for many e-shops into a rich schema
with lots of missing values.

In [19], we presented GenLink, a supervised learn-
ing algorithm that employs genetic programming in
order to learn expressive linkage rules from a set of ex-
isting reference links. These rules consist of attribute-
specific preprocessing operations, attribute-specific
comparisons, linear and non-linear aggregations, as
well as different weights and thresholds. The evalua-
tion of GenLink on various dense datasets (e.g. sider-
drugbank, LinkedMDB, restaurants) showed that the
algorithm delivers good results with F-measure above
95% [19]. As shown in the evaluation section of this
paper, GenLink as well as other entity resolution meth-
ods run into problems once the datasets to be matched
are not dense, but contain larger amounts of missing
values.

In order to overcome the challenge of missing val-
ues, this article introduces and evaluates three methods
that build on the GenLink algorithm. First, we present
GenLink Group Learning (GenLinkGL), an approach
that groups linkage rules based on product attribute di-
versity, thus successfully circumventing missing val-
ues. Next, we introduce the GenLink Selective Ag-
gregations (GenLinkSA) algorithm which extends the
original approach with selective aggregation operators
to ignore and penalize comparisons that include miss-
ing values. Finally, we introduce GenLinkComb, an al-
gorithm that combines the central ideas of the previous
two into a integrated method. We evaluate all meth-
ods using six benchmark datasets: three of them are e-
commerce product datasets, the other datasets describe
restaurants, movies, and drugs.

The rest of this paper is structured as follows: Sec-
tion 2 formally introduces the problem of entity reso-
lution. Section 3 gives an overview of the GenLink al-
gorithm. Subsequently, in Section 4 we introduce Gen-
LinkGL, GenLinkSA and GenLinkComb methods for
dealing with sparse data. Section 5 presents the results
of the experimental evaluation in which we compare
the proposed methods with various baselines as well
as other entity resolution systems. Section 6 discusses
the related work.

2. Problem Statement

We consider two datasets, A the source, and B
the target dataset. Each entity e ∈ A ∪ B consists
of a set of attribute-value pairs (properties) e =
{(p1, v1), (p1, v2), . . . , (pn, vn)}, where the attributes
are numeric, categorical or free-text. For instance, an
entity representing a product might be described by
the name, UPC, color, camera properties as shown in
Figure 1. Our goal is to learn a matching rule that de-
termines whether a pair of entities (ea, eb) represents
the same real-world object. Or formally, given the two
datasets A and B, the objective is to find the subset M
consisting of all pairs of entities for which a relation
∼R holds and is defined by [14]:

M = {(ea, eb); ea ∼R eb, ea ∈ A, eb ∈ B} (1)

Additionally, find its complement subset U defined
as:

U = (A× B) \ M (2)

To infer a rule specifying the conditions which must
hold true for a pair of entities to be part of M, we rely
on a set of positive correspondences R+ ⊆ M that
contains pairs of entities for which the ∼R relation is
known to hold. Analogously, we rely on negative cor-
respondences R− ⊆ U that contain pairs of entities for
which the ∼R relation is known not to hold.

Given the correspondences, we can define the pur-
pose of the learning algorithm as learning matching
rules from a set of correspondences:

m : 2(A×B) × 2(A×B) → (A× B→ [0, 1]) (3)

The first argument in the above formula denotes a
set of positive reference links, while the second argu-
ment denotes a set of negative reference links. The re-
sult of the learning algorithm is a linkage rule which
should cover as many reference links as possible while
generalising to unknown pairs.

3. Preliminaries

GenLink is a supervised algorithm for learning ex-
pressive linkage rules for a given entity matching task.
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Fig. 1. Examples of product specifications’ mappings: (left) Specification from walmart.com, (center) Centralised product Catalog and (right) Specification from
ebay.com

As all three algorithms that are introduced in this paper
build on GenLink, this section summarises the main
components of the GenLink algorithm. The full details
of the algorithm are presented in [19].

3.1. Linkage Rule Format

Within GenLink, linkage rules are represented as a
tree built out of four basic types of operators: (i) prop-
erty operators, (ii) transformation operators, (iii) com-
parison operators and (iv) aggregation operators. The
linkage rule tree is strongly typed i.e. only specific
combinations of the four basic operators are allowed.
Figure 2 shows two examples of linkage rules for
matching data describing mobile phones. The formal
grammar of the linkage rule format is found in [19].

Property operators. Retrieves all values of a specific
property p of each entity. For instance, in Figure 2a
the left most leaf in the tree retrieves the value for the
“phone_type” property from the source dataset.

Transformation operators. Transforms the values
of a set of properties or transformation operators. Ex-
amples of common transformation functions include
case normalization, tokenization, and concatenation of
values from multiple operators.

Comparison operators. GenLink offers three types
of comparison operators. The first type of opera-
tors are character-based comparisons: equality, Leven-
shtein distance, and Jaro-Winkler distance. The sec-
ond type includes token-based comparators: Jaccard
similarity and Soft Jaccard similarity. The comparison
is done over a single property or a specific combina-
tion of properties. The third type of comparison op-
erators, numeric-similarity, calculate the similarity of
two numbers. Examples of comparison operators can
be seen in Figure 2a as the parents of the leaf nodes.

Aggregation operators. Aggregation operators com-
bine the similarity scores from multiple comparison
operators into a single similarity value. GenLink im-
plements three aggregation operators. The maximum

aggregation operator aggregates similarity scores by
choosing the maximum score. The minimum aggrega-
tion operator chooses the minimum from the similarity
score. Finally, the average aggregation operator com-
bines similarity scores by calculating their weighted
average.

Note that these aggregation functions can be nested,
meaning that non-linear hierarchies can be learned.
For instance, in Figure 2a, four different properties
are being compared (“phone_type”, “brand”, “mem-
ory” and “display_size”). Subsequently, two aver-
age aggregations are applied to aggregate scores from
phone_type and brand, and memory and display_size,
respectively. Finally, a third average aggregation is ap-
plied to aggregate scores from the previous aggrega-
tors.

Compared to other linkage rule formats, GenLink’s
rule format is rather expressive, as it is subsuming
threshold-based boolean classifiers and linear classi-
fiers, hence allows for representing non-linear rules
and may include data transformations which normal-
ize the values prior to comparison [19]. Therefore,
it allows rules to closely adjust to the requirements
of a specific matching situation by choosing a sub-
set of the properties of the records for the compari-
son, normalizing the values of these properties using
chains of transformation operators, choosing property-
specific similarity functions, property-specific similar-
ity thresholds, assigning different weights to different
properties, and combining similarity scores using hier-
archies of aggregation operators.

3.2. The GenLink Algorithm

The GenLink algorithm starts with an initial popula-
tion of candidate solutions which is evolved iteratively
by applying a set of genetic operators.

Generating initial population. The algorithm finds
a set of property pairs which hold similar values be-
fore the population is generated. Based on that, ran-
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dom linkage rules are built by selecting property pairs
from the set and building a tree by combining random
comparisons and aggregations.

Selection. The population of linkage rules is bred
and the quality of the linkage rules is assessed by a
fitness function relying on user-provided training data.
The purpose of the fitness function is to assign a value
to each linkage rule which indicates how close the
given linkage rule is to the desired solution. The al-
gorithm uses Matthews Correlation Coefficient (MCC)
as fitness measure. MCC [26] is defined as the degree
of the correlation between the actual and predicted
classes or formally:

MCC =
tp× tn− f p× f n√

(tp + f p)(tp + f n)(tn + f p)(tn + f n)

(4)

The training data consists of a set of positive corre-
spondences (linking entities identifying the same real-
world object) and a set of negative correspondences
(stating that entities identify different objects). The
prediction of the linkage rule is compared with the
positive correspondences, counting true positives and
false negatives, the negative correspondences, count-
ing false positives and true negatives. In order to pre-
vent linkage rules from growing too large and poten-
tially overfitting to the training data, we penalize link-
age rules based on the number of operators:

f itness = MCC − 0.05× operatorcount (5)

Once the fitness is calculated for the entire popula-
tion, GenLink selects individuals for reproduction by
employing the tournament selection method.

Crossover. GenLink applies six types of crossover
operators:

1. Function crossover. The function crossover se-
lects one comparison operator at random in each
linkage rule and interchanges the similarity func-
tions between the selected operators.

2. Operators crossover. The operators crossover is
designed to combine aggregation operators from
two linkage rules, by selecting an aggregation
from each linkage rule and combining their re-
spective comparisons. The crossover selects all
comparisons from both aggregations and removes
each comparison with a probability of 50%.

3. Aggregator crossover. In order to learn aggrega-
tion hierarchies, the aggregation crossover oper-
ator selects a random aggregation or comparison
operator in the first linkage rule and replaces it
with a random aggregation or comparison opera-
tor from the second linkage rule.

4. Transformation crossover. This crossover builds
chains of transformations. To recombine the
transformations of two linkage rules the transfor-
mation operators of both rules are combined by
randomly selecting an upper and a lower trans-
formation operator, recombining their paths via
a two point crossover and removing duplicated
transformations.

5. Threshold crossover and Weight crossover. The
last two types of crossovers are used to recombine
thresholds and weights respectively, for a random
comparison operator in each linkage rules, by av-
eraging their thresholds/weights.

An in-depth discussion of the crossover operators is
provided in [19].

4. Approaches

In [37] we have shown that the GenLink algorithm
struggles to optimise property selection for sparse
datasets. On an e-commerce dataset containing many
low-density attributes the algorithm only reached a F-
measure of less than 80%, in contrast to the above
95% results that are often reached on dense datasets. In
the following, we propose three algorithms that build
on the GenLink algorithm and enable it to properly
exploit sparse properties. The GenLinkGL algorithm
builds a group of matching rules for the given match-
ing task (group generation) and applies the group of
matching rules to create new correspondences (group
application). Next we introduce selective aggrega-
tions, new operators within the GenLink algorithm that
can better deal with missing values. Finally, we intro-
duce GenLinkComb approach, integrating the central
ideas of the previous two methods into a single com-
bined method.

4.1. The GenLinkGL Algorithm

The GenLink algorithm lacks the capability to opti-
mise property selection when dealing with sparse data.
The algorithm will select a combination of dense prop-
erties while sparse properties will rarely be selected.
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(a)

(b)

Fig. 2. Example of two rules from the group for the phone category together with the coverage of each rule

This behavior influences adversely cases in which val-
ues from relatively dense properties are missing. For
instance, when matching product data describing mo-
bile phones from different e-shops, the brand, phone
type, and memory properties will be rather important
for the matching decisions and these attributes will
also likely be rather dense as they are provided by
many e-shops. Therefore, GenLink will focus on these
attributes and due to the penalty on large rules (com-
pare Equation 5) will not include alternative attribute
combinations involving low-density properties, such
as gtin1, display size, or operating system. In cases in
which a value of one of these dense attributes is miss-
ing, the algorithm will likely fail to discover the cor-
rect match, while by exploiting a combination of alter-
native low-density attributes it would have been pos-
sible to recognize that the both records describe the
same product. Including all alternative attribute combi-
nations into a single linkage rule would result in rather
large rules containing multiple alternative branches
that encode the different attribute combinations. Due
to the penalty for large rules from Equation 5, only the
most important alternative attribute combinations will

1Global Trade Item Number (GTIN) is an identifier for trade items, devel-
oped by GS1. – www.gtin.info/

be included into the rules, whereas combinations hav-
ing a lower coverage will be left unused.

A way to deal with this problem could be to loosen
the size penalty in Equation 5, however removing (or
loosening) the penalty has the potential to result with
an overfitted model and thus would not improve re-
sults. With GenLink Group Learning (GenLinkGL),
we choose an alternative approach - instead of trying
to grow very large rules that cover different attribute
combinations, we learn sets of rules in which each rule
is optimized for a specific property combination. The
method allows us to separate more clearly the issue of
avoiding overfitting rules while still being able to cover
multiple property combinations. By combining multi-
ple combinations of properties in a group, the learning
algorithm is given the freedom to optimize matching
rules not only for the most common attribute combina-
tions, but also for less common combinations involv-
ing sparse properties, as a result increasing the overall
recall. In the following, we describe how GenLinkGL
combines rules into groups and later selects a rule from
the group in order to match a pair of records having a
specific property combination.

Group generation. The basic idea of the first al-
gorithm, presented in Algorithm 1, is that by group-
ing different linkage rules with different properties

www.gtin.info/
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Algorithm 1 Generating a group

Input:
Group← rule top fitness matching rule
P ← Rules All matching rules in the available pop-
ulation
Output:
The fittest group
for all i ∈ P do

if i.properties 6⊂ Group.properties then
PotentialGroup← insert(Group, i)
if f itness(PotentialGroup) > f itness(Group)
then

Group = PotentialGroup
end if

end if
end for
return G

we could circumvent the missing values in the data.
The initial group is populated with the fittest individ-
ual from the population generated by GenLink. Sub-
sequently, an initial fitness for this group is computed
using the MCC (compare Equation 4).

Motivated by the GenLink algorithm, our algorithm
builds a group that maximises fitness. To do that at
each learning iteration, the algorithm iterates through
the entire population of linkage rules and combines
their individual fitness. We restrict the combination to
linkage rules whose properties are not a subset of the
properties of the group and include a linkage rule that
has at least one new property that is not present in the
group. We combine the fitness of the linkage rules by
summing the number of correctly predicted instances
in the training set (compare Equations 6 and 7), calcu-
lating for each individual the percentage of the cover-
age of training examples in the group. Once the cor-
rectly predicted instances are summed the current fit-
ness function is applied to the group. If the fitness
of that combination is greater than the current fittest
group, the new group becomes the best group. As an
output the algorithm gives the fittest group.

tpgroup =

i=|G|∑
i=1

distinct tpi,

f pgroup = |R+| − tpgroup

(6)

tngroup =

i=|G|∑
i=1

distinct tni,

f ngroup = |R−| − tngroup

(7)

Algorithm 1 can potentially lead to groups con-
taining a large number of rules, up to the complete
population of learned rules. In such case the algo-
rithm is prone to overfitting, since the population might
capture the entire training set. In order to prevent
this, we penalize groups containing a large number
of rules: f itnessgroup = MCCgroup − c ∗ rulecount.
Where, c = (0.001, 0.003, 0.005) is a small constant,
strictly depending on the number of individuals in the
population. The larger the population, the bigger the
chance for overfitting. Therefore, the constant should
be higher for larger populations in order to penalise the
fitness more. By penalizing the fitness by the number
of members in the group we ensure that there will be
no unneeded bloating of the learned group.

For example, let the linkage rule in Figure 2a be the
fittest individual after the n − th learning iteration of
the algorithm. The initial group contains this linkage
rule. The group would not be able to correctly predict
correspondences that could only have been matched
by a combination of the gtin, phone_type and memory
properties. At the first iteration we combine the group
with the linkage rule in Figure 2b containing the gtin
property. As a result, the correspondences above could
be captured by the group leading to better fitness.

Group application. As an input the second algo-
rithm, presented in Algorithm 2, takes the output of Al-
gorithm 1 and a set of pairs to be matched. The individ-
uals in the input group are sorted by the percentage of
coverage. Sorting enables Algorithm 2 to find the more
influential individual rules in less iterations. For each
pair the algorithm iterates through the group of match-
ing rules. If the pair to be matched contains the same
properties as in the matching rule, the matching rule
is applied. If there is no matching rule which has the
exact properties as the instances, the top matching rule
is applied. For instance, when matching (a) the spec-
ification from walmart.com with the product catalog
and (b) the specification from ebay.com with the prod-
uct catalog from Figure 1, the algorithm would use the
first rule from Figure 2 for the a pair, but use the sec-
ond matching rule from Figure 2 for the b pair since
in b one of the specifications does not have a value for
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Algorithm 2 Applying a group to set of pairs for
matching

Input:
G ← group of matching rules
Pairs← pairs for matching
Output:
Linked instances
Result← nil
for all pair ∈ Pairs do

for all rule ∈ G do
if pair.properties ≡ rule.properties then

Result← match(pair, rule)
break

end if
end for
if 6 ∃match then

Result← match(pair,G.top)
end if

end for
return Result

the display_size attribute, however it contains a gtin
attribute.

Property diversity is an underlying factor behind this
method. Since the prime goal is to enlarge the com-
bination of properties that are used for matching, it is
imperative that the dataset contains a diverse range of
properties. More precisely, if the dataset has a smaller
number of properties, the number of combination of
properties that can be made by grouping linkage rules
is smaller. Therefore, this approach would not improve
much upon GenLink when dealing with datasets with
smaller number of properties.

4.2. The GenLinkSA Algorithm

An alternative to learning groups of small rules spe-
cializing on a specific property combination each is
to learn larger rules covering more properties and ap-
ply a penalty for the uncertainty that arises from val-
ues missing in these properties. For instance, a larger
rule could rely on five properties for deciding whether
two records match. If two of the five properties have
missing values, the remaining three properties can still
be used for the matching decision. Nevertheless, a de-
cision based on three properties should be considered
less certain than a decision based on five properties.
In order to compensate for this uncertainty, we could
require the values of the remaining three properties to
be more similar than the values of the five properties

in the original case in order to decide for a match.
The GenLink Selective Aggregations (GenLinkSA) al-
gorithm implements this idea by changing the behavior
of the comparison operators as well as the aggregation
operators in the original GenLink algorithm.

Null-enabled Comparison Operators. The original
GenLink algorithm does not distinguish between a pair
of different values and a pair of values containing a
missing value. In both cases, the algorithm assigns the
similarity score 0. This is problematic when similarity
scores from multiple comparison operators are com-
bined using the aggregation function average or mini-
mum, as the resulting similarity score will be unnatu-
rally low for the case of missing values. In order to deal
with this problem, GenLinkSA amends the compari-
son operators with the possibility to return the value
null: a GenLinkSA comparison operator will return
null if one or both values are missing. If both values
are filled, the operator will apply its normal similarity
function and return a value in the range [0, .., 1].

Selective Aggregation Operators. The GenLink ag-
gregation operators calculate a single similarity score
from the similarity values of multiple comparison
operators using a specific aggregation function such
as weighted average, minimum, or maximum. Gen-
LinkSA adjusts the aggregation operators to apply the
aggregation function only to non-null values. In order
to compensate the uncertainty that results from miss-
ing values (comparison operators returning the value
null), the similarity score that results from the aggrega-
tion is reduced by constant factor α for each compari-
son operators that returns a null value. In this way, all
non-null similarity scores are aggregated and a penalty
is applied for each property pair containing missing
values. Formally, a GenLink aggregation is defined by
the following:

S a : (S ∗ × N∗ × Fa)→ S

(s̄, w̄, f a)→ ((ea, eb)→ f a(se,w))

with se : (s1(ea, eb), s2(ea, eb), .., sn(ea, eb))

(8)

The first argument S ∗ contains the similarity scores
returned by the operators of this aggregation while the
second argument N∗ contains a weight for each of the
operators, finally the third argument Fa represents the
aggregation function that is applied to compute the
similarity score S .
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Fig. 3. GenLink SA learned rule for the Phone category

Given the aggregation operators, we can now define
GenLinkSA’s selective aggregation operators as:

S a : (S ∗ × N∗ × Fa)→ S

(s̄, w̄, f a)→ ((ea, eb)→ f a(se,w))− υ

with se : (s1(ea, eb), s2(ea, eb), .., sn(ea, eb)),

υ = β× | { si(ea, eb) | si(ea, eb)→ null ∧ si ∈ se } |

(9)

Where the uncertainty factor υ is defined as the
number of null values multiplied by a small valued
constant factor β = (0.01, 0.03, 0.05). The uncertainty
factor serves to penalize the rule for each null similar-
ity operator. As the overall similarity score is reduced
by the uncertainty factor, the values of the non-null
properties must be more similar in order to reach the
same similarity score as for a pair in which all proper-
ties are filled.

For example, let the rule learned by the GenLinkSA
algorithm be the one shown in Figure 3 and let in-
stances for matching be (a) the specification from wal-
mart.com that should be matched with the product cat-
alog and (b) the specification from ebay.com to be
matched with the product catalog from Figure 1. When
matching (a) only a small penalty will be applied since
for five out of six comparisons a non-null similar-
ity score will be returned and only the comparison
for one property (comp_os) will be penalised. On the
other hand, the pair (b) will be heavily penalised since
four of the six comparisons will return null values.
Evidently, this method will discourage high similarity
scores in the presence of missing values and will thus
refrain from considering borderline cases with missing
values as matches, resulting in a higher precision.

4.3. The GenLinkComb Algorithm

GenLinkGL and GenLinkSA tackle the issue of miss-
ing values differently. Namely, GenLinkGL strives to
group matching rules exploiting different combina-
tions of properties and thus is able to apply alterna-
tive rules given that values of important properties are
missing. By being able to exploit alternative property
combinations, GenLinkGL is tailored to improve re-
call. On the other hand, by penalizing comparisons
with missing values, GenLinkSA incentivises learn-
ing matching rules that include more properties and
substantially lowers the similarity scores of uncertain
pairs, and by that improves precision. As the basic
ideas behind GenLinkGL and GenLinkSA do not ex-
clude each other but are complementary, a combina-
tion of both methods into a single integrated method
could combine their advantages: optimize rules for al-
ternative attribute combinations while at the same time
dealing with the uncertainty that arises from miss-
ing values inside the rules. The GenLinkComb algo-
rithm achieves this by combining the GenLinkSA and
the GenLinkGL algorithms as follows: GenLinkComb
uses the GenLinkSA algorithm to evolve the popula-
tion of linkage rules. In each iteration of the learning
process, GenLinkComb groups the learned rules to-
gether using the GenLinkGL algorithm. By being able
to deal with missing values either inside the rules us-
ing the selective aggregation operators or within the
grouping of rules, the GenLinkComb learning algo-
rithm has a higher degree of freedom in searching for
a good solution.

5. Evaluation

The evaluation of the aforementioned methods was
conducted using six benchmark datasets: three e-
commerce product datasets, and three other datasets
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describing restaurants, movies, and drugs. In addi-
tion to comparing GenLinkGL, GenLinkSA, and Gen-
LinkComb with each other, we also compare the
approaches to existing systems including CoSum-P,
FEBRL, EAGLE, COSY, MARLIN, ObjectCoref, and
RiMOM. The following section will describe the six
benchmark datasets, give details about the experimen-
tal setup, and present and discuss the results of the
matching experiments.

5.1. Datasets

Product Matching Datasets. We use three different
product datasets for the evaluation:

Abt-Buy dataset: The dataset includes correspon-
dences between 1081 products from Abt.com and
1092 from Buy.com. The full input mapping con-
tains 1.2 million correspondences, from which
1000 are annotated as positive correspondences
(matches). Each entity of the dataset might con-
tain up to four properties: product name, descrip-
tion, manufacturer and price. The dataset was in-
troduced in [22]. Since the content of the prod-
uct name property is a short text listing various
product features rather than the actual name of the
product, we extract the product properties shown
in Table 1 from the product name values using the
dictionary-based method presented in [39]. We
choose the Abt-Buy dataset because it is widely
used to evaluate different matching systems [5, 9].

Amazon-Google dataset: The dataset includes corre-
spondences between 1363 products from Amazon
and 103,226 from Google. The full input map-
ping contains 4.4 million correspondences, from
which 1000 are annotated as matches. Each entity
of the dataset contains the same properties as the
Abt-Buy dataset. This dataset is presented in [22].
We perform the same extraction of properties as
in the Abt-Buy dataset. The Amazon-Google data
set has also been widely used as benchmark data
set [22].

WDC Product Matching Gold Standard: This gold
standard [38] for product matching contains cor-
respondences between 1500 products (500 each
from the categories headphones, mobile phones,
and TVs), collected from 32 different websites
and a unified product catalog containing 150
products with the following distribution: (1) Head-
phones - 50, (2) Phones - 50, and (3) TVs - 50.
The data in the catalog has been scraped from

Table 1

Properties together with their density in the Abt-Buy and Amazon-Google
datasets.

Dataset Property Density (A / B) %

Abt-Buy

Original Attributes
Product Name 100

Description 63
Manufacturer 48

Price 36
Extracted Attributes

Model 91
Brand 72

Amazon-Google

Original Attributes
Product Name 100

Description 70
Manufacturer 52

Price 31
Extracted Attributes

Model 88
Brand 76

leading shopping services, like Google Shop-
ping, or directly from the vendor’s website. The
gold standard contains 500 positive correspon-
dences (matches) and more than 25000 nega-
tive correspondences (non-matches) per category.
Compared to the Amazon-Google and Abt-Buy
datasets, the WDC Product Matching Gold Stan-
dard is more heterogeneous as the data has been
collected from different websites. The gold stan-
dard also features a richer integrated schema con-
taining over 30 different properties for each prod-
uct category.

Other Entity Resolution Datasets. In order to be
able to compare our approaches to more reference sys-
tems, as well as to showcase the ability of our algo-
rithms to perform on datasets from different applica-
tion domains, we run experiments with three additional
benchmark datasets which were used in [19]:

Restaurant dataset: The dataset contains correspon-
dences between 864 restaurant entities from the
Fodor’s and Zagat’s restaurant guides. Specifi-
cally, 112 duplicate records were identified.

Sider-Drugbank dataset: The dataset contains corre-
spondences between 924 drug entities in the Sider
dataset and 4772 drug entities in the Drugbank
dataset. Specifically, there have been 859 dupli-
cate records identified.

LinkedMDB dataset This dataset contains 100 cor-
respondences between 373 movies. The authors
note that special care was taken to include rel-
evant corner cases such as movies which share
the same title but have been produced in different
years.
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Table 2

Properties and property density of the WDC Product Matching Gold Standard,
Restaurants, Sider-Drugbank and LinkedMDB datasets. Note that properties
having a density below 10% are not included into the table.

Dataset Property Density (A / B) %

WDCPr Gold Standard

Headphones
Brand 97 / 100

Item Type 87 / 100
MPN 60 / 86
Color 56 / 96

Sensitivity 53 / 88
Impedance 53 / 92
Cup Type 47 / 38

Form Factor 43 / 77
Magnet Mat. 27 / 51
Diaphragm 25 / 35

Phones
Phone Type 91 / 100

Memory 87 / 95
Brand 86 / 100
Color 79 / 43

Display Size 71 / 92
Rear Cam. Res. 70 / 85

OS 64 / 64
Display Res. 48 / 53

Processor 28 / 36
Front Cam. Res. 20 / 66

TVs
Brand 100 / 100

Item Type 91 / 100
Display Type 81 / 85
Display Size 65 / 96
Display Res 55 / 87

Tot. Size 51 / 74
Ref. Rate 50 / 96

Img. Asp. Rat. 38 / 60
Connectivity 35 / 61
Resp. Time 10 / 25

Restaurant

Name 100
Address 100
Contact 100

Type 100

Sider-Drugbank
Name 100 / 100

Indication 100 / 93

LinkedMDB

Name 100 / 100
Director 100 / 100
Rel Date 100 / 100
Studio 95 / 97

Tables 1 and 2 give an overview of densities of
properties in the six evaluation datasets. If the den-
sity of a property differs in the source (A) and the tar-
get (B) dataset, both densities are reported. For the
Abt-Buy and Amazon-Google datasets, we show all
original property densities as well as the density of
the extracted properties. As stated before, the prod-
uct datasets exhibit more sparsity. The Abt-Buy and
Amazon-Google datasets follow a similar distribution

in which only the product name property has a den-
sity of 100%. It is worth to note that the product name
property in these datasets is actually a short description
of the product mentioning different properties rather
than the actual product name. WDC Product Matching
Gold Standard contains a small set of properties with
a density above 90% while most properties belong to
the long tail of rather sparse properties [38].

5.2. Experimental Setup

Baselines. As baselines for the WDC dataset, we re-
peat TF-IDF cosine similarity and Paragrph2Vec ex-
periments presented in [38], additionally we learn a
decision tree and a random forest as baselines. The
first baseline, considers pair-wise matching of product
descriptions for which TF-IDF vectors are calculated
using the bag-of-word feature extraction method. The
second baseline, considers building a Paragraph2Vec
model [24] for product names using 50 latent fea-
tures and the Distributed Bag-of-Words model. Deci-
sion trees and random forests are learned in Rapid-
miner2 using grid search parameter optimization as
well as offering the learning algorithm different simi-
larity metrics (e.g. Jaro-Winkler, Jaccard, numeric).

Other Entity Resolution Systems. In order to set the
GenLink results into context, we also ran the WDC
Gold Standard experiments with EAGLE [34], a super-
vised matching system that also employs genetic pro-
gramming3, FEBRL [9]4, an entity resolution system
that internally employs an SVM, and CoSum-P [44],
an unsupervised system that treats entity resolution as
a graph summarization problem. We pre-compute at-
tribute similarities for CoSum-P as described in [44].

Additionally, we provide a comparison to handwrit-
ten Silk rules. These rules are composed of up to six
properties for each product category and were writ-
ten by the authors of the article using their knowl-
edge about the respective domains as well as statis-
tics about the datasets. As an example, the handwrit-
ten rule that was used for matching headphones im-
plements the idea that if the very sparse properties
html:gtin or html:mpn match exactly, the record pair
should be considered as a match. If the numbers are
not present or do not match, the rule should fall back to
averaging the similarity of the properties html:model,

2RapidMiner is a data science software platform - https://rapidminer.com/
3http://aksw.org/Projects/LIMES.html
4https://sourceforge.net/projects/febrl/

https://rapidminer.com/
http://aksw.org/Projects/LIMES.html
https://sourceforge.net/projects/febrl/
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html:impedence and html:headphone_cup_type giving
most weight to html:model.

GenLinkGL, GenLinkSA, and GenLinkComb.
The GenLinkGL, GenlinkSA, and GenLinkComb

algorithms were implemented on top of the Silk
Framework5. The source code of the original Gen-
Link implementation6 as well as the source code of
GenLinkGL, GenlinkSA, GenLinkComb algorithms7

is publicly available, so all results presented in this ar-
ticle can be replicated. Table 3 gives an overview of
the aggregation, comparison, and transformation func-
tions the algorithms could choose from in the experi-
ments. It should be noted that for each aggregation op-
erator there exists also a selective aggregation opera-
tor. Hyper parameters are set using grid search. Even
though grid search was run for each dataset, the result-
ing parameter values were the same for all datasets.
Table 4 summarises the parameters that were used for
GenLink and its variants in the experiments. All exper-
iments are run 10 times and the results are averaged.

GenLink and its variants as well as EAGLE were
trained on a balanced dataset consisting of 66% pos-
itive correspondences and the same number negative
correspondences. The systems were evaluated after-
wards using the remaining 33% of the correspon-
dences. For training FEBRL, we calculated TF-IDF
scores and cosine similarity for all pairs given in the
dataset. As with GenLink and EAGLE, FEBRL was
trained on 66% of the data and evaluated on the rest.
For the experiments on the Abt-Buy and Amazon-
Google datasets, all systems were trained using the
original as well as the extracted attribute-value pairs.

All experiments have been conducted using a In-
tel(R) Xeon CPU with 6 cores available while the Java
heap space has been restricted to 4GB. On average, it
took GenLink and GenLinkSA approx. 6 minutes to
learn a matching rule using the maximum number of
iterations (see Table 4), while it took GenLinkGL and
GenLinkComb 8.5 minutes to learn a matching rule.

Preprocessing. The restaurants, movies, and drugs
datasets have an original density of over 90%. In order
to use them to evaluate how the different approaches
perform on sparse data, we systematically removed
25%, 50% and 75% of the values. More precisely, we
first randomly sample 50% of properties (not includ-
ing the name property) and for those we randomly se-

5www.silkframework.org
6https://github.com/silk-framework/silk. To be noted that the 2.6.0 version

was used for the experiments.
7https://github.com/petrovskip/silk.2.6-GenLinkSA and https:

//github.com/petrovskip/silk.2.6-GenLinkGL

Table 3

Available aggregation comparison and transformation functions. The transfor-
mation functions are used only for non-product datasets

Comparison Aggregation Transformations
Exact Similarity Average Tokenize

Levenstein Distance Maximum Lower Case
Jaccard Similarity Minimum Concatenate
Number Similarity

Table 4

GenLink (GL/SA/Comb) Parameters

Parameter Value
Population size 1000

Maximum iterations 100
Selection method Tournament selection
Tournament size 10

Probability of Crossover 50%
Probability of Mutation 50%

Stop Condition F-measure = 1.0
Matching Rule Penalty 0.03
Uncertainty constant 0.05

lect 25%, 50% and 75% of the values and removed the
rest, thus introducing greater percentage of null val-
ues in the datasets. We do not remove values from all
properties since we want to recreate the sparseness as
in the product datasets as close as possible. We do not
remove the name property since it is the only relevant
identifier for a human, i.e without it even a human can-
not decide whether two entities are the same.

5.3. Product Matching Results

Table 5 gives an overview of the matching results
on the WDC Product Matching Gold Standard dataset.
As baselines, we take TF-IDF cosine similarity and
Paragrph2Vec experiments presented in [38], and de-
cision tree and random forest explained above. More-
over, we compare results from: (i) handwritten match-
ing rules, (ii) the GenLink algorithm, (iii) GenLinkGL,
(iv) GenLinkSA and (v) GenLinkComb. Additionally,
we compare to three state-of-the-art matching systems
for this dataset: (i) EAGLE [34], (ii) FEBRL [22] and
(iii) CoSum-P [44] as explained above.

As expected both baselines perform poorly for each
product category. Specifically, TF-IDF could not cap-
ture enough details of a given entity. Paragaph2Vec,
improves on the TF-IDF baseline by including the se-
mantic relations between the words of a given record.
However, the semantic relationships do not prove to be
sufficient. The third baseline however, a decision tree
approach, is already an adequate baseline as it consis-
tently comes close to the handwritten rules. Moreover,
the random forest model gives very good results on all

www.silkframework.org
https://github.com/silk-framework/silk
https://github.com/petrovskip/silk.2.6-GenLinkSA
https://github.com/petrovskip/silk.2.6-GenLinkGL
https://github.com/petrovskip/silk.2.6-GenLinkGL
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Table 5

Matching results per category for the WDC Product Matching Gold Standard

Headphones
Precision Recall F-measure

Baseline TF-IDF Cosine 0.622 0.559 0.588
Baseline Pargraph2vec 0.667 0.685 0.675
Baseline Decision Tree 0.892 0.712 0.791
Baseline Random Forest 0.891 0.764 0.822
Handwritten Rule 0.841 0.838 0.839
EAGLE [34] 0.661 0.905 0.763
GenLink [19] 0.692 0.946 0.799
CoSum-P [44] 0.795 0.868 0.830
FEBRL [9] 0.884 0.837 0.850
GenLinkGL 0.837 0.924 0.888
GenLinkSA 0.922 0.925 0.923
GenLinkComb 0.920 0.961 0.940

Phones
Precision Recall F-measure

Baseline TF-IDF Cosine 0.385 0.676 0.491
Baseline Pargraph2vec 0.497 0.624 0.553
Baseline Decision Tree 0.751 0.600 0.667
Baseline Random Forest 0.771 0.726 0.747
Handwritten Rule 0.656 0.722 0.687
EAGLE [34] 0.699 0.672 0.685
GenLink [19] 0.708 0.715 0.712
CoSum-P [44] 0.746 0.821 0.781
FEBRL [9] 0.792 0.748 0.776
GenLinkGL 0.742 0.894 0.808
GenLinkSA 0.813 0.737 0.773
GenLinkComb 0.815 0.886 0.849

TVs
Precision Recall F-measure

Baseline TF-IDF Cosine 0.661 0.474 0.554
Baseline Pargraph2vec 0.654 0.553 0.572
Baseline Decision Tree 0.839 0.714 0.771
Baseline Random Forest 0.785 0.810 0.797
Handwritten Rule 0.782 0.716 0.747
EAGLE [34] 0.722 0.674 0.697
GenLink [19] 0.790 0.711 0.748
CoSum-P [44] 0.779 0.814 0.796
FEBRL [9] 0.807 0.747 0.775
GenLinkGL 0.791 0.875 0.819
GenLinkSA 0.864 0.745 0.810
GenLinkComb 0.863 0.815 0.838

three datasets. With that said, it is to be expected to
have better results for both decision tree and random
forest with a better feature extraction model as proven
in Ristoski et al. [40].

EAGLE [34] and GenLink [19] improve on the
baselines since they have the ability to optimise the
thresholds for comparisons and the weights within
aggregations. Both methods have comparable results
with the handwritten rules. The first method that shows
a better performance than the handwritten rules for all
product categories is FEBRL [9]. Because of FEBRL’s
SVM implementation is optimized for entity resolu-

tion, the system seems to be able to capture more nu-
anced relationships between data points than the hand-
written rules. The main difficulty of the FEBRL is re-
call. In addition, the method has problems with match-
ing corner cases.

The more recent approach, CoSum-P [44], over-
comes the results of FEBRL. The graph summariza-
tion approach is able to successfully generalise entities
based on pair-wise pre-computed property similarities
that refer to the same entity into one super node. How-
ever, having no supervision (ability to learn from nega-
tive examples) the algorithm suffers from lower preci-
sion due to the inability to distinguish between closely
related entities. For instance, "name: iphone 6; mem-
ory: 16gb" and "iphone 6s; memory: 16gb" would give
a high pre-computed similarity score, and thus will be
clustered together. Without negative references there is
no way for the approach to differentiate between these
two products.

All of the GenLinkGL, GenLinkSA, and Gen-
LinkComb consistently outperform results to CoSum-
P, FEBRL and the handwritten rules, according to the
Friedman [non-parametric rank] test [15] with signif-
icance level of 0.01 6 p 6 0.05. Additionally, they
consistently show significant improvement over EA-
GLE and GenLink according to the McNemar’s test
[29] with significance level of p 6 0, 01. For in-
stance, when comparing FEBRL to the GenLinkGL
algorithm, we can notice significantly worse recall re-
sults. The GenLinkGL algorithm decreases the num-
ber of false negatives by learning sets of rules in which
each rule is optimized for a specific property combina-
tion. Hence, the algorithm is successfully circumvent-
ing missing values, and in turn exhibits a jump in re-
call. Correspondingly, the GenLinkSA algorithm gives
comparable results in F-measure compared to FEBRL,
mostly due to the jump in precision. The precision
jump occurs since the selective aggregation operators
substantially lower matching scores of uncertain pair-
ings due to the uncertainty factor. Due to this penalty,
pairs with missing values which otherwise would have
borderline similarity will not be considered matches.
Both the jump in recall of GenLinkGL and the jump
in precision of GenLinkSA contribute to improve the
matching and the algorithms have comparable results
in F-measure. Finally, GenLinkComb shows signifi-
cantly better performance in F-measure than the rest
of the tested field, due to the fact that the combina-
tion method is able of both preserving precision by
penalising borderline cases with missing values and
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Table 6

Standard deviation of the GenLink Algorithms on the WDC dataset

Headphones
Average F-score Standard Dev.

GenLink 0.799 ±0.054
GenLinkGL 0.888 ±0.029
GenLinkSA 0.923 ±0.051
GenLinkComb 0.940 ±0.034

Phones
Average F-score Standard Dev.

GenLink 0.712 ±0.092
GenLinkGL 0.804 ±0.035
GenLinkSA 0.773 ±0.095
GenLinkComb 0.849 ±0.039

TVs
Average F-score Standard Dev.

GenLink 0.748 ±0.087
GenLinkGL 0.819 ±0.042
GenLinkSA 0.910 ±0.087
GenLinkComb 0.838 ±0.047

preserving recall by successfully exploiting alternative
attribute combinations.

Category wise, the headphones category proves to
be an easier matching task obtaining the best results
with 94% F-measure. Headphones have a smaller
number of distinct properties and therefore e-shops
tend to more consistently describe products with
the same attributes compared to the other two cate-
gories. The TVs and phones category reach similar F-
measures of 83.8% and 84.9% respectively.

Table 6 shows the averaged results of the algorithms
and their standard deviation values. The stability of
GenLink and GenLinkSA is improved by GenLinkGL
and GenLinkComb. The latter, group multiple individ-
uals, thus increasing the probability to converge to the
optimal solution.

Comparison of the learned matching rules. In or-
der to explain the differences in the results of Gen-
LinkSA, GenLinkGL, and GenLinkComb, we analyze
and compare the rules that were learned by the three
algorithm for matching using the expample of mobile
phones. Figure 3 shows the GenLinkSA rule that was
learned. As we can see, the rules uses six properties
which are combined using a hierarchy of average ag-
gregations. Within the hierarchy, more weight is put
onto a branch containing four properties, as well as
on the properties brand and phone_type within this
branch. The GenLinkGL algorithm has learned a group
consisting of 12 matching rules that use 15 distinct
properties for matching phones. Table 7 shows the top
five rules from the GenLinkGL approach sorted by
their coverage. More than 50% of the rules contain the

model (phone_type) and the display size (disp_size)
attributes. It is interesting to examine the coverage of
the learned rules: The first rule was applied to match
80% of the pairs in the training data. The second rule
was only used for 5% of the cases, the next rule for 2%
and so on, meaning that the data contained one dom-
inant attribute combination (the one exploited by the
first rule) while by specializing on alternative combi-
nations (like the second rule involving the gtin prop-
erty) still improved the overall result. Furthermore,
most of the learned matching rules use similar com-
binations of aggregation functions (average aggrega-
tion). The only exception is the second rule which
uses the property gtin. Namely, the gtin property by
itself is enough to identify the specific product, thus
the maximum aggregation function is used. For match-
ing phones, the GenLinkComb algorithm has learned
a group that only consists of five matching rules which
use 10 distinct properties. Consequently it achieves a
better F1-performance using less rules and less prop-
erties compared to GenLinkGL. Table 8 shows the
rules that were learnt by the GenLinkComb algorithm,
again sorted by coverage. Interestingly, the rules have
a more homogenous coverage distribution than the
GenLinkGL rules. Instead of generating low-coverage
rules for exotic property combinations as GenLinkGL
does, GenLinkComb generate less groups which ex-
ploit more properties each and uses the selective aggre-
gations and the uncertainty penalty to deal with miss-
ing values within these properties. The property com-
position also supports this argument: The robust prop-
erty composition of GenLinkComb suggests that the
learned matching rules in the group contain more nu-
anced differences, while GenLinkGL has more irregu-
lar property composition.

Amazon-Google and Abt-Buy Results. To evaluate
the algorithms on datasets having lower number of
distinct properties (see Table 1), we applied the algo-
rithms to the Amazon-Google and Abt-Buy datasets.
The results of these experiments are given in Ta-
ble 9 and Table 10. As reference systems, apart of
FEBRL, the best performing approaches found in lit-
erature are listed. Table 9 gives results on the match-
ing experiment done on the Amazon-Google dataset.
GenLinkComb outperforms a commercial system [22]
based on manually set attribute-level similarity thresh-
olds. The commercial system [22] derives matching
rules similar to the handwritten rules in WDC Prod-
uct Matching Gold Standard and therefore is inferior to
the GenLinkComb. CoSum-P [44], shows comparable
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Table 7

Property, Comparisons, Aggregations and Training example coverage for the
top 5 rules in the learned group for phone category learned by GenLinkGL

Properties Comps. 1st 2nd Coverage
Agg. Agg.

phone_type Exact
Avg

Avg 0.800
brand Levens.
dips_size Levens.

Avg
memory Levens.
gtin Exact

Max
0.053memory Levens.

Avg
phone_type Levens.
phone_type Exact

Avg
Avg 0.020

brand Levens.
proc_type Exact

Avg
core_count Exact
phone_type Exact

Avg
Avg 0.017

comp_os Levens.
rear_cam_res Jaccard

Avg
front_cam_res Jaccard
disp_size Exact

Avg
Avg 0.013

brand Exact
rear_cam_res Jaccard

Avg
disp_res Jaccard

results to GenLinkComb. As the datasets only have a
low number of properties and as these properties often
contain multi-word texts, the token-similarity based
approach of CoSum-P can play its strength, leading
to much better relative results compared to the WDC
Gold Standard (Table 5).

Table 10 gives results on the matching experiment
done on the Abt-Buy dataset. As with previous datasets
GenLinkComb shows the best performance in terms
of F-Measure. Both, FEBRL’s SVM classifier [9] and
MARLIN [5]8 give comparable results to both Gen-
LinkSA and GenLinkGL. This is to be expected, as the
features for both FEBRL and MARLIN were manually
engineered for the given datasets whereas our methods
select features automatically. Moreover, the SVM’s for
both FEBRL and MARLIN were trained with larger
feature sets than our approaches (five matchers on two
properties).

When comparing the results of the experiments with
WDC Product Matching Gold Standard to the results
of the Abt-Buy and Amazon-Google datasets it be-
comes evident that the GenLink variants perform bet-
ter on datasets containing a large number of properties
than on dataset containing only a smaller number of
properties.

8Results from experiments with FEBRL and MARLIN are published in [22]

Table 8

Property, Comparisons, and Training example coverage and Normalized
threshold mean for the top 5 rules in the learned group for phone category
learned by GenLinkComb

Properties Comps. 1st 2nd 3rd Coverage
Agg. Agg. Agg.

phone_type Levens.
Avg

Min
0.492

brand Levens.

Avg
memory Jaccard

Avg
dips_size Jaccard
memory Exact.

Min
phone_type Levens.
phone_type Exact

Min

0.221
memory Exact.

Min
rear_cam_res Jaccard

Avg
memory Levens.

Avg
dips_size Levens.
phone_type Exact

Avg
Avg

Avg 0.215

brand Levens.
memory Levens..

Avg
rear_cam_res Jaccard
dips_size Jaccard

Avg
comp_os Levens.
phone_tupe Exact

Min
Min

Avg
0.037

memory Levens.
phone_type Levens.
proc_type Exact
phone_type Levens.

Min

Min 0.035

memory Exact
memory Levens.

Min
Avg

front_cam_res Jaccard
disp_res Jaccard

Avg
phone_type Jaccard

Table 9

Product matching results for the Amazon-Google dataset

Precision Recall F-measure
GenLink [19] 0.493 0.571 0.513
GenLinkGL 0.501 0.813 0.604
GenLinkSA 0.691 0.632 0.643
GenLinkComb 0.690 0.651 0.669

Reference Systems F-measure
CoSum-P [44] 0.639 0.695 0.666
FEBRL [9] 0.601
COSY [22] 0.622

5.4. Other Domains Results

Generally, for all datasets we can conclude that our
methods find it difficult to find the correct matches
when dealing with severely sparse data (25%). Ad-
ditionally, GenLinkComb and GenLinkSA have sim-
ilar performance and both tend to outperform Gen-
LinkGL for every dataset for the sparser settings. In
contrast, when the datasets have 75% property density,
our methods perform close to the results of reference
systems achieved on the datasets with more than 90%
property density.
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Table 10

Product matching results for the Abt-Buy dataset

Precision Recall F-measure
GenLink [19] 0.632 0.694 0.661
GenLinkGL 0.650 0.833 0.730
GenLinkSA 0.721 0.714 0.717
GenLinkComb 0.723 0.798 0.758

Reference Systems F-measure
FEBRL [9] 0.713
MARLIN [5] 0.708

Table 11

Results for the Restaurants dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [19] 0.651 0.654 0.909
GenLinkGL 0.642 0.661 0.905
GenLinkSA 0.654 0.660 0.938
GenLinkComb 0.653 0.664 0.936

Reference Systems on original dense dataset F-measure
GenLink [19] 0.993
Carvalho et al.[7] 0.980

Table 11 gives results on the matching experiment
done on the Restaurant dataset. GenLinkSA and Gen-
LinkComb perform closest to the reference systems,
while GenLinkGL does not show any improvement on
this dataset. Due to low number of properties that this
dataset has GenLinkComb and GenLinkGL show lit-
tle improvement compared to the other methods. Con-
sequently, GenLInkComb and GenLinkGL cannot find
enough matching rules with alternative attributes to
group, making GenLinkComb to boil down to Gen-
LinkSA and GenLinkGL to boil down to GenLink.
Density wise, all three methods follow the same down-
ward trend when the dataset is more sparse, keeping
the relative improvements of GenLinkSA and Gen-
LinkGL in comparison to GenLink.

Table 12 gives results on the matching experiment
done on the Sider-Drugbank dataset. Even though
we systematically lowered the quality of the dataset,
GenLink still outperforms the state-of-the-art [18, 43]
systems for the case of 75% property density. With
that said, GenLinkGL and GenLinkSA reach consid-
erably better results in recall and precision respec-
tively. When the data become severely sparse, like in
the case of 25% our methods show an increase of
5% in F-measure compared to GenLink. Similarly to
the Restaurant dataset the GenLinkComb does not im-
prove over GenLinkSA as again the grouping algo-
rithm could not find any suitable rules with alternative
attributes for grouping.

Table 12

Results for the Sider-Drugbank dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [19] 0.345 0.388 0.837
GenLinkGL 0.399 0.424 0.875
GenLinkSA 0.401 0.422 0.871
GenLinkComb 0.402 0.422 0.872

Reference Systems on original dense dataset F-measure
ObjectCoref [18] 0.464
RiMOM[43] 0.504
GenLink [19] 0.970

Table 13

Results for the LinkedMDB dataset

Density
25% 50% 75%

F-measure F-measure F-measure
GenLink [19] 0.540 0.587 0.873
GenLinkGL 0.550 0.627 0.911
GenLinkSA 0.559 0.624 0.920
GenLinkComb 0.611 0.658 0.952

Reference Systems on original dense dataset F-measure
EAGLE [34] 0.941
GenLink [19] 0.999

Table 13 gives results on the matching experiment
done on the LinkedMDB dataset, which contains more
properties compared to the other two datasets. In this
case GenLinkComb outperforms other variations of
GenLink even when data spareness is severe. Un-
like with the Restaurants and Sider-Drugbank datasets
GenLinkComb successfully finds rules with alternative
attributes to group and thus increasing F-measure by
5% compared to GenLinkSA.

6. Related Work

Entity resolution has been extensively studied under
different names such as record linkage [1, 8, 17, 32],
reference reconciliation [13], coreference resolution
[25, 31]. In the following, we review a set of represen-
tative entity resolution approaches; while we refer to
tutorials [16] and surveys [6, 10, 42] for more through-
out reviews.

Distance-based entity resolution approaches focus
on learning a pairwise distance metric between enti-
ties and then either set a distance threshold or build
a pairwise classifier to determine which entities are
merged. Such pairwise classifiers can be categorised
into threshold based boolean classifiers and linear clas-
sifiers. One of the first generic approaches for entity
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resolution based on boolean classifiers is presented at
[2]. The approach is based on the assumption that the
entity resolution process consists of iterative match-
ing and merging which results in a set of merged
records that cannot be further matched or merged with
each other. The authors also assume that matching and
merging can be done if similar values exists, therefore
their approach would not be able to match or merge
records with missing values.

One of the most popular method to model distance-
based entity resolution approaches is with linear clas-
sifiers. There are two popular applications of SVMs to
entity matching MARLIN (Multiply Adaptive Record
Linkage with INduction) [5] and FEBRL (Freely Ex-
tensible Biomedical Record Linkage) [9]. While there
are numerous studies that propose approaches for han-
dling missing values in SVMs, for instance [36], these
optimizations are often expensive and to our knowl-
edge are not used in matching approaches.

An important use cases of entity resolution is match-
ing of product data. Following the same trend from
above various studies show optimization approaches
of linear classifiers for product resolution. For in-
stance, Kannan et al. [21] learn a logistic regression
model on product attributes extracted from a dictio-
nary model. Similarly, in [23] the authors extend the
FEBRL approach from [22] with more detailed fea-
tures. Finally, in [39], the authors compare various
classifiers for product resolution (SVMs, Random For-
est, Naive Bayes) with features extracted from a dictio-
nary method and multiple Conditional Random Fields
(CRFs) models. The authors, extended their work in
[40], where they present extraction models with latent
continuous features for product matching and classifi-
cation, proving that more sophisticated feature extrac-
tion methods significantly improve traditional machine
learning methods for entity resolution.

The entire process of entity resolution can be un-
supervised [11, 27, 35, 44] or supervised [31, 32].
To compare learning entity resolution methods, semi-
automatic baseline approaches are used. These ap-
proaches are based on a definition of effective linking
specifications that excel in one-to-one matching tasks
including TF-IDF or Paragraph2Vec with cosine sim-
ilarity or based on other similarity functions as pre-
sented in Hassanzadeh et al. [17]. Limes [32] and Silk
[19] are examples of supervised entity resolution sys-
tems that focus on combining expressive comparisons
with good run-time behavior. Both Limes and Silk
learn linkage rules employing similar genetic program-
ming approaches, i.e EAGLE [34] and GenLink re-

spectively. In addition to GenLink, Silk provides Ac-
tiveGenLink an active learning approach presented in
Isele et al. [20]. As shown throughout this paper, both
algorithms do not handle missing values well.

Contrary to the above, in Ngomo et al. [33], the au-
thors present RAVEN - an entity resolution approach
based on perceptron learning. Namely, RAVEN treats
the discovery of link specifications as a classification
problem. It discovers link specifications by first find-
ing class and property mappings between knowledge
bases automatically, after which it computes linear and
boolean classifiers that can be used as link specifica-
tions. However, similar to FEBRL the main limita-
tion of RAVEN is that only linear and boolean classi-
fiers can be learned, making optimization for matching
spares data expensive.

There is another direction of work that is focused on
collective based entity resolution approaches. For in-
stance, Bhattacharya and Getoor [4] proposed a novel
relational clustering algorithm that uses both property
and relational information between the entities of same
type for determining the underlying entities. However,
the defined cluster similarity measure depends primar-
ily on property value similarity, thus missing values
will have effect on the cluster similarity measure. An-
other collective entity resolution approach is intro-
duced in [3] where the authors use an extended LDA
model to perform entity resolution for authors and pub-
lications simultaneously.

In contrast, [28, 41] use probabilistic model for cap-
turing the dependence among multiple matching deci-
sions. Specifically, CRFs have been successfully ap-
plied to the entity resolution domain [28] and is one of
the most popular approaches in generic entity resolu-
tion. On another hand, a well-founded integrated solu-
tion to the entity-resolution problem based on Markov
Logic is proposed in [41]. However the approach ap-
ply the closed-world assumption, i.e.whatever is not
observed is assumed to be false in the world.

One of the first works in the Semantic Web on
the topic of unsupervised entity resolution is Nikolov
et al. [35]. The authors present a genetic algorithm
for matching, similar to EAGLE [34] and GenLink
[19]. However, instead of providing reference links
as basis for calculating fitness, the authors propose a
"pseudo F-measure"; an approximation to F-measure
based on indicators gathered from the datasets. Specif-
ically, the fitness function proposed by the author as-
sumes datasets not to contain any duplicates. This as-
sumption is violated by many real world datasets. For
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instance, the WDC dataset contains many offers for the
same product all originating from eBay.

CoSum [44] and idMesh [12] are two represen-
tative unsupervised graph-based entity resolution ap-
proaches. CoSum and idMesh are both treating entity
resolution are graph summarisation problem, i.e. gen-
erating super-nodes by clustering entities and in the
case of CoSum by applying collective matching tech-
niques. Both approaches employ sophisticated generic
similarity metrics. Nevertheless, dues to not using neg-
ative evidence, they likely run into problems for use
cases in which small syntactic differences matter, such
as product type Lul5X versus Lul6X. As shown by the
good results of CoSum-P [44] on the Amazon-Google
dataset (see Section 5.3), unsupervised approaches can
excel in use cases that involve rather unstructured, tex-
tual data. But due to not using domain-specific evi-
dence, they likely reach lower relative results for use
cases that require domain-specific similarity metrics
and attribute weights.

7. Conclusion

The article introduces three methods for learning
expressive linkage rules from sparse data. The first
method learns groups of matching rules which are each
specialized on a specific combination of non-NULL
properties. Moreover, we introduce new operators to
the GenLink algorithm: selective aggregation opera-
tors. These operators assign lower similarity values to
pairings with missing values which in turn boosts pre-
cision. Finally, we presented a method that integrates
the central ideas of the previous two methods into
one combined method. We evaluate the three methods
on six different datasets, three of them are of the e-
commerce domain (as one of the domains that often in-
volves sparse datasets), and the other three datasets are
benchmark datasets that were used in previous work.
We show improvements of up to 16% F-measure com-
pared to handwritten rules, on average 12% F-measure
improvement compared to the original GenLink algo-
rithm, 15% compared to EAGLE, 8% compared to
FEBRL, and 5% compared to CoSum-P. In addition,
we show that the method using group matching rules
improves recall up to 15%, while selective aggregation
operators mostly improve precision of up to 16%. The
combination that encompasses these methods allows
for improvement of up to 5% F-measure compared to
the GenLinkGL and GenLinkSA themselves.

As a general conclusion, the high gains in F-
measure clearly shows that identity resolution systems
should take the use case of sparse data into account and
not only focus on dense datasets. When benchmark-
ing and comparing systems, it is important to not only
use dense evaluation datasets, but also test on dataset
with varying attribute density like the WDC Product
Matching Gold Standard [38].
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