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Department of Information and Knowledge Engineering, Faculty of Informatics and Statistics, Prague University
of Economics and Business, nám W Churchilla 4, 13067 Czech Republic
E-mail: first.last@vse.cz

Editor: Agnieszka Lawrynowicz, Poznan University of Technology, Poland
Solicited reviews: Jedrzej Potoniec, Poznan University of Technology, Poland; Emir Muñoz, Genesys, US; Two anonymous reviewers

Abstract. AMIE+ is a state-of-the-art algorithm for learning rules from RDF knowledge graphs (KGs). Based on association
rule learning, AMIE+ constituted a breakthrough in terms of speed on large data compared to the previous generation of ILP-
based systems. In this paper we present several algorithmic extensions to AMIE+, which make it faster, and the support for data
pre-processing and model post-processing, which provides a more comprehensive coverage of the linked data mining process
than does the original AMIE+ implementation. The main contributions are related to performance improvement: (1) the top-k
approach, which addresses the problem of combinatorial explosion often resulting from a hand-set minimum support threshold,
(2) a grammar that allows to define fine-grained patterns reducing the size of the search space, and (3) a faster projection binding
reducing the number of repetitive calculations. Other enhancements include the possibility to mine across multiple graphs, the
support for discretization of continuous values, and the selection of the most representative rules using proven rule pruning and
clustering algorithms. Benchmarks show reductions in mining time of up to several orders of magnitude compared to AMIE+.
An open-source implementation is available under the name RDFRules at https://github.com/propi/rdfrules.
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1. Introduction

Finding interesting interpretable patterns in data is a
frequently performed task in data science workflows.
Software for finding association rules, as a specific
form of patterns, is present in nearly all data mining
software bundles. These implementations are based on
the Apriori algorithm [1] or its successors. While very
fast, these algorithms are severely constrained with re-
spect to the shape of analyzed data – only single tables
or transactional data are accepted. Algorithms for log-
ical rule mining developed within the scope of Induc-
tive Logical Programming (ILP) do not have these re-
strictions, but they typically require negative examples
and do not scale to larger knowledge graphs (KGs) [2].

*Corresponding author.

Commonly used open KGs, such as Wikidata [3],
DBpedia [4], and YAGO [5], are published in RDF [6]
as sets of triples – statements in the form of binary rela-
tionships. Most of these RDF KGs1 operate under the
Open World Assumption (OWA). It means that the KG
is regarded as inherently incomplete and is open for
adding more statements that are currently missing. For
example, if the description of a person does not con-
tain any information about employment, it is not cor-
rect to infer that the person is unemployed; however, a
straightforward application of ILP approaches to rule
learning requires such inferences to be made to gener-
ate negative examples. Hence, it is not appropriate to
use standard ILP tools for mining rules from RDF KGs

1Also “RDF Knowledge Graph”, which is a term used in related
research (e.g., [7, 8]) to denote a KG formed as a collection of state-
ments in the RDF format.
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due to their reliance on the Closed World Assumption
(CWA) in input data.

The current state-of-the-art approach for rule mining
from RDF KGs is AMIE+ [2]. AMIE+ combines the
main principles that make association rule learning fast
with the expressivity of ILP systems. AMIE+ mines
Horn rules, which have the form of implication and
consist of one atomic formula (or simply atom) on the
right side, called head, and conjunction of atoms on the
left side, called body:

B1 ∧ B2 ∧ . . . ∧ Bn ⇒ H

The restricted variant of atom relevant for RDF KG
mining has the form of a triple. For instance,2

(?a <hasChild> ?c) ∧ (?b <hasChild> ?c)

⇒ (?a <isMarriedTo> ?b).

In this example, each atom consists of a predicate and
two variables at its subject and object positions. A vari-
able can also be instantiated to a specific constant, e.g.,

(?a <hasChild> <Carl>).

AMIE+ uses its own strategy to evaluate the quality of
mined rules with respect to the OWA and, therefore,
it is also appropriate for mining rules from open KGs
forming the Semantic Web.

In our view, AMIE+ constitutes a big leap forward in
learning rules from KGs, similar in magnitude to what
the invention of Apriori meant for rule learning from
transactional data. However, AMIE+ also shares some
notable limitations with the original Apriori algorithm.
Decades of research in association rule learning and
frequent itemset mining continuously show how dif-
ficult it is for users to constraint the search space so
that meaningful rules are generated, and combinato-
rial explosion is avoided. In the presented work, we
address these limitations by drawing inspiration from
techniques proven in rule mining from transactional
databases. The extensions to AMIE+ introduced in this
paper include a top-k approach, which can circum-
vent the need for the user manually tuning the sup-
port threshold, fine-grained search space restrictions,
avoidance of some repetitive calculations, and the abil-
ity to discretize values in numerical literals.

2Since all atoms are binary, we use an infix notation, which is
more readable here than the prefix (first-order logic) notation used in
ILP. We also distinguish variables with a question mark, and the In-
ternationalized Resource Identifiers (IRIs) with angle brackets. See
Sec. 3 for more details.

Together, these optimisations substantially reduce
the large search space of potential rules that have to be
checked. All the aforementioned approaches have been
implemented within the RDFRules framework and
evaluated in comparison with the original AMIE+ im-
plementation. Additionally, this article describes two
post-processing approaches – rule clustering and prun-
ing – adopted for RDF KGs. These techniques are nec-
essary to address the high number of rules that are typ-
ically on the output of rule mining .

The scope of functionality of RDFRules is inspired
by the widely used arules framework [9] for rule
learning from tabular data. Similarly to arules, RD-
FRules covers the complete data mining process, in-
cluding data pre-processing (support for numerical at-
tributes), various mining settings (fine-grained patterns
and measures of significance), and post-processing of
mining results (rule clustering, pruning, filtering and
sorting).

We provide benchmarks demonstrating the benefits
of the proposed performance enhancements. For exam-
ple, for mining rules with constants – which are an es-
sential element of association rules mined from tabular
data – the AMIE+ algorithm can take hours (or days),
but the presented approach has a more than an order of
magnitude shorter mining time on YAGO and DBpe-
dia. Similarly, the top-k approach can provide a more
than ten times shorter mining time compared to the
standard approach supported by AMIE+ when all rules
conforming to the user-set minimum support threshold
are first mined and then filtered. We also show that our
implementation scales better than AMIE+ when addi-
tional CPU cores are added.

This paper is organised as follows. Section 2 pro-
vides a broader overview of related work. A digest of
the AMIE+ approach is ranged as Section 3. Section 4
presents a list of limitations of AMIE+, providing the
motivation for our work. The proposed approach is
described in Section 5. Section 6 briefly describes its
reference implementation. The results of the evalua-
tion are presented in Section 7. The conclusion sum-
marises the contribution and provides an outlook for
future work.

A very limited work-in-progress version of this re-
search was published in the proceedings of the 2018
RuleML Challenge workshop [10].

2. Related Work

Approaches applicable for rule learning from RDF
KGs come principally from two domains. Mining
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Horn rules from KGs has been for several decades
studied within the scope of Inductive Logical Program-
ming (ILP). A second area that inspired the develop-
ment of recent algorithms, including AMIE+, is asso-
ciation rule learning, where the upward closure prop-
erty [11] has been introduced to prune the space of hy-
potheses. At present, one of the main drivers for de-
velopment of rule-based approaches is a potentially
better explainability and traceability of the generated
models compared to alternative approaches (e.g. graph
embeddings).

Inductive Logical Programming Algorithms based
on the principles of ILP learn Horn rules on binary
predicates. Examples of applicable ILP approaches in-
clude ALEPH3 and WARMeR [12].

Much progress related to ILP happened in the do-
main of mining from the Semantic Web. In [13], the
authors have introduced the Semintec algorithm for
mining patterns from ontologies. An example of a
generated pattern is "Client(key), livesIn(key, x1), Re-
gion(x1); support = 1.0". As can be noticed, this sys-
tem does not generate rules, but rather frequent pat-
ters, and thus uses support as the main measure. Sup-
port is also used in the extension of this algorithm
called Fr-ONT [14], which was the first algorithm of
this type to support variable-free notation of descrip-
tion logic. In terms of implementation, Fr-ONT uses
the Pellet reasoner and Jena API4, the latter is also
used in our RDFRules framework. It should be noted
that support in these algorithms is defined differently
in AMIE+/RDFRules, in Fr-ONT support of a concept
is calculated relatively to the number of instances of
a user-specified reference concept. A subsequent ver-
sion of Fr-ONT called Fr-ONT-Qu [15] can use an ar-
bitrary interest (quality) measure that the patterns have
to meet to be included in the output. This system was
primarily developed for mining patterns represented
as SPARQL queries. An extension of this approach
called substitutive itemsets allows to discover pairs of
items that are interchangeable as they appear in sim-
ilar context [16]. Interestingly, both Fr-ONT-Qu and
the substitutive itemset mining were made available
as RapidMiner5 extensions. One possible use case for
this type of pattern mining is automatically suggest-
ing rdfs:subClassOf relations, which can facilitate the
work of ontology engineering [17].

3http://www.cs.ox.ac.uk/activities/programinduction/Aleph/
aleph_toc.html

4https://jena.apache.org/
5https://rapidminer.com/

While ILP systems were primarily designed for
learning from closed collections of ground facts, as has
been demonstrated, e.g., in [2], they can also be used
for rule learning from KGs. However, there are several
challenges:

– ILP systems expect negative examples and are de-
signed for the CWA.

– Logic-based reasoning approaches can multi-
ply errors which are inherently present in most
KGs [18]. For example, for KGs sourced from
Wikipedia, they can arise due to parsing errors.

– ILP systems have been reported to be too slow
to process real-world KGs such as YAGO. Galár-
raga et al. [2] benchmarked two state-of-the-art
ILP systems (ALEPH and WARMeR) and found
that these systems were under some settings un-
able to terminate within one day, while AMIE+
processed the same task within several seconds or
minutes.

– ILP systems such as ALEPH may not generate
all specializations of a given rule, while the as-
sociation rule mining approach, such as AMIE+,
would return all rules matching given thresholds
[19].

It should be noted that some recent approaches based
on ILP principles, such as STRiKE [20] or AnyBURL
[19], ameliorate some of these problems (such as per-
formance issues and error propagation). However, due
to use of a heuristic to guide rule learning, these algo-
rithms do not typically return a complete set of rules
given the user set thresholds (such as minimum sup-
port and minimum confidence) as AMIE+ does.

Association Rule Mining Some algorithms for rule
mining from RDF KGs use adaptations of the seminal
Apriori algorithm [21] for discovering frequent item-
sets or association rules from transactions. A trans-
action is a set of items typically related to a single
contextual object, such as a shopping basket, and the
whole transactional database contains objects of the
same type. An example association rule is:

{milk, bread} ⇒ {butter} .
This contrasts with ILP systems, where a logical rule
may span across several contextual object types.

The AMIE+ algorithm uses the upward closure
property used in the Apriori algorithm to reduce the
search space by a minimum support threshold and
other mechanisms for making rule mining faster than
the mentioned ILP systems [2]. AMIE+ was recently
used, e.g., for completing missing statements in KGs

http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph_toc.html
http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph_toc.html
https://jena.apache.org/
https://rapidminer.com/
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[19] and also used for rule learning in SANSA-Stack
[22], which is a general-purpose toolbox for dis-
tributed data processing of large-scale RDF KGs based
on Apache Spark6.

Another algorithm adapting association rule mining
for RDF data is called SWARM [8]. In the Semantic
Web we usually divide an RDF KG into two compo-
nents: an A-Box containing instance triples and a T-
Box defining a schema for them. The SWARM algo-
rithm, proposed by Barati et al., mines Semantic Asso-
ciation Rules (as the authors call the algorithm’s out-
put) from both the A-Box and the T-Box. Compared
with the AMIE+ algorithm, which only mines rules
from the A-Box, SWARM generates so-called Seman-
tic Items, forming a set of transactions which is used
as input for association rule mining. Hence, SWARM
does not mine typical ILP rules with variables, but only
semantically-enriched association rules, such as:

Person : (instrument,Guitar)⇒ (occupation,

Songwriter).

There are also other approaches that transform RDF
data into transactions and mine typical association
rules or itemsets, for example, in the specific contexts
of ontology classes [23] or Wikipedia categories [24].
Nebot and Berlanga [25], in turn, proposed an exten-
sion of the SPARQL query language to generate trans-
actions of a user-defined context and to mine associa-
tion rules using the Apriori algorithm.

Combining ILP with Association Rule Mining A hy-
brid approach that involves both reasoning and asso-
ciation rule mining is presented in [26]. The intended
application of this type of rule mining is suggesting
new axioms to be added to the ontology [27]. De-
spite the advantages of the hybrid approach, the use of
a reasoner in combination with association rule min-
ing is likely to exceed what one can consider a “rea-
sonable time” [26]. On the other hand, the advantage
of approaches involving reasoning is that they gen-
erate rules, which are not necessarily closed, while
AMIE+/RDFRules outputs only closed rules. Another
advantage is that rules, which are not consistent with
reference ontology can be pruned [27], which is not
possible in AMIE+/RDFRules since these systems do
not work with ontological knowledge. However, even
not considering performance issues, the ability to ap-
ply reasoning may not always be an advantage [18].
In this research, the authors report on an experiment

6https://spark.apache.org/

with type inference on real-world RDF datasets, us-
ing logical entailment rules. They report that if the KB
has error rate of only 0.0005 (99.9% correctness), the
reasoning approach would induce too many incorrect
types. In contrast, a statistical analysis of types per-
formed by the proposed SDType algorithm has accu-
racy over 90% [18]. The AMIE+/RDFRules approach
also does not use formal semantics embedded in an on-
tology (e.g., cardinality restrictions) and instead used
information only from RDF triples.

Graph Embeddings The main limitation of the pre-
viously mentioned approaches is the need to store the
entire KG in the memory to allow for fast exploration
of the search space. This may be a problem for large
KGs since they have high resource requirements, and
the existing systems are not able to effectively scale
input data and the mining process. Graph embedding
methods, e.g. RESCAL [28], HolE [29] and TransE
[30], transform a KG or its individual components
(nodes and edges) into vectors. With this representa-
tion, fast and easily scalable vector operations can be
performed, and the number of vector dimensions can
be kept under control.

The RLvLR algorithm [31] uses low-dimension em-
beddings of RDF KG resources and predicates for fast
search of rules. This approach is even faster than the
state-of-the-art AMIE+ algorithm but is focused only
on learning rules for a specific predicate and cannot
discover rules with constants.

Another rule mining system using embeddings is
RuLES7 [32]. It mines the same kind of rules as
AMIE+ (with or without constants) and requires an
embedding model pre-trained by TransE, HolE or SSP
[33].

While learning rules from embeddings has certain
advantages, it is also known to have multiple weak-
nesses. One is its poor capability of encoding sparse
entities [34]. Another problem is that the results of
learning embeddings are highly susceptible to the
choice of dimensionality, typically requiring the time-
consuming process of training the embeddings with
different dimensionality and evaluating them in func-
tional tests [34, 35]. Irrespective of the choice of di-
mensionality, the set of rules extracted from embed-
dings would not exactly match the exhaustive set of
rules that is valid in the input knowledge graph, which
is extracted by AMIE+. A recent independent evalua-
tion performed on the real-world task of graph com-

7https://github.com/hovinhthinh/RuLES

https://spark.apache.org/
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pletion indicated superior results of AMIE+ in terms
of precision compared to multiple algorithms based
on embeddings, including TransE, HolE, or RESCAL
[36], on some completion tasks.

Accuracy–Interpretability Tradeoff As can be seen
from the review presented above, KG completion –
as a representative of a common application domain
for relational learning – can be approached with many
types of statistical learning methods. These do not in-
clude only rule-based algorithms, but also other ap-
proaches, like SDType [18], that exploit links in the
graph in a statistical way, or even the latest generation
of reasoning algorithms. For example, the probabilistic
case-based reasoning algorithm proposed by Das et al.
[37] is highly competitive to rule-based approaches on
the KG completion task, which were discussed above.

The higher accuracy of a learning algorithm is often
associated with their increased sophistication [38, 39],
which can make it more difficult to explain a par-
ticular prediction, or the learned model as a whole,
to the human user. Rules are generally considered an
intrinsically explainable representation [38, 40], al-
though not without caveats [41]. In our opinion, the
utility of “AMIE-style” rule learning approaches such
as AMIE+ or RDFRules is in providing an appeal-
ing combination of predictive performance and ex-
plainability. In contrast to most other relational rule
learning algorithms, AMIE+ outputs all rules match-
ing the user-set constraints and the language bias of
the algorithm (for instance, AMIE+ only generates
closed rules). It is also relatively straightforward to ex-
plain why a particular rule was generated by AMIE+
and why another rule was not. However, the exhaus-
tive approach to rule generation becomes a disadvan-
tage in those learning scenarios where long rules are
needed and it is at the same time impossible to apply
other mining constraints or patterns limiting the search
space. In such cases, other types of statistical learning
or reasoning approaches may be more appropriate.

AMIE 3 It should be noted that a new successor of
AMIE+, called AMIE 3, has been reported recently
by the same research group [42]. Some of the im-
plemented enhancements follow the same direction as
those present in RDFRules. Since the AMIE 3 system
only came out when most experiments on RDFRules
had been completed (and the present article was al-
ready in a late phase of the review process), we do not
present empirical comparisons of both systems here.

3. A Review of AMIE+

The following paragraphs describe the basic fea-
tures of the AMIE+ algorithm on which our approach
builds. While the central concepts of the approach
mainly correspond to those from the original AMIE+
paper [2], we translated their definitions to the triple
notation of the RDF model and added some further
notions that allow us to smoothly progress to the de-
scription of our own RDFRules system in the follow-
ing parts of the paper.

We describe, in turn: the format of source data (RDF
triples), the format of rules, the notion of instantiation
(of rules by the data), and the significance measures
computed for the rules wrt. the data.

3.1. RDF Knowledge Graphs and Triples

AMIE+ mines Horn rules from RDF Knowledge
Graphs (abbreviated as KG). A KG consists of a set of
statements (or ground facts) in the triple form 〈s, p, o〉,
where the predicate p expresses a relationship between
the subject s and the object o. In the Semantic Web
any subject or predicate is identified by an IRI8 or (this
only holds for the subject) a blank node identifying the
resource. The object resource is represented by an IRI,
a blank node, or a literal value with some data type.
Individual statements may be linked to each other by
sharing the same resources within the current graph or
even across several graphs.

3.2. Rule Structure

An AMIE+ (Horn) rule ~B ⇒ H consists of a single
atom H at the head position (consequent) and a con-
junction of atoms ~B = B1 ∧ . . . ∧ Bn at the body po-
sition (antecedent). The rule length is the number of
atoms in the rule.

3.2.1. Atoms
An AMIE+ atom is a statement in the form of 3-

tuple, whose atom items are denoted, analogously to
those of an RDF triple, as subject, predicate and ob-
ject. Similarly as in a triple, the predicate of an atom
has to be a constant, i.e., an IRI. On the other hand, at
least one of the subject and object items, or possibly
both, are variables; the remaining item, if any, is then a
constant of the type allowed at this position in a triple
(we will thus, for brevity, only use the notion of ‘atom’

8Internationalized Resource Identifier



6 V. Zeman et al. / RDFRules: Making RDF Rule Mining Easier and Even More Efficient

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

for non-ground atoms; the ground ones will be simply
called triples).

For example, the atom (?a <livesIn> ?b) contains the
variables ?a and ?b, whereas the atom (?a <livesIn>
<Prague>) contains only one variable ?a at the subject
position and the constant <Prague> at the object posi-
tion.

Remark on notation The AMIE+ literature describes
rules using the Datalog notation [43] common in the
ILP domain. An example rule in Datalog notation is:

wasBornIn(a, b)⇒ diedIn(a, b).

In this paper we use an infix notation derived from the
RDF serialization Notation3.9 The same rule is then
written as

(?a <wasBornIn> ?b)⇒ (?a <diedIn> ?b).

All variables are prefixed by a question mark and
atoms are enclosed in parentheses for better readability
of a conjunction of more atoms. A specific triple (con-
taining only constants, i.e. a ground fact) is enclosed
in angle brackets, and commas are used as argument
separators, to make a distinction from (non-ground)
atoms, e.g.,

〈<John>, <livesIn>, <Prague>〉.

3.2.2. Allowed Forms of Rules
The output rule has to fulfil several conditions. First,

the rule atoms must be connected. That means vari-
ables are shared among the atoms to form one con-
nected graph:

(?a <isMarriedTo> ?c) ∧ (?c <directed> ?b)

⇒ (?a <actedIn> ?b).

Second, only closed rules are allowed. A rule is closed
if each of its atoms contains a variable at the object
or/and the subject position and any variable appears at
least twice in the rule:

(a closed rule)

(?a <livesIn> ?b)⇒ (?a <wasBornIn> ?b),

(an open rule)

(?a <livesIn> ?c)⇒ (?a <wasBornIn> ?b).

Finally, an atom cannot contain the same variable at
both object and subject positions.

9https://www.w3.org/2000/10/swap/grammar/n3-report.html

Compared to ILP systems, AMIE+ (and, conse-
quently, also the RDFRules) limits its expressiveness
to binary predicates. Unary predicates are implicitly
covered by the possibility to include atoms having the
rdf:type predicate, in a rule; the object of the atom can
then be interpreted as the name of a unary predicate
in terms of Horn logic. Predicates with higher arity, as
well as function symbols, are not considered.

In this respect, Horn rules conform even syntacti-
cally to the eco-system of Semantic Web knowledge
representations. On the other hand, they do not aim to
tightly integrate with the so-called rule languages for
the Semantic Web, such as RIF [44] or SWRL [45].10

The previous example of AMIE+ closed rule can be
rewritten in RIF (which has, by the logic programming
conventions, the head atom as the left-hand side) as:

Forall ?a ?b
(?a[<wasBornIn> -> ?b]
:- ?a[<livesIn> -> ?b])

Note that this RIF rule explicitly includes the univer-
sal quantifier, as common in (crisp) first-order logic.
In contrast, rules learned by inductive tools such as
AMIE+ are often not valid universally but the degree
of their validity is quantitatively estimated from data.
This limits their direct applicability for predicting new
facts in the KGs: the learned rules are typically as-
sumed to be checked by a human expert before they
can be used for inference.

Notably, SWRL and RIF also support anonymous
concept expressions, not all of which can be learned
by AMIE+. For example, the SWRL rule

livesIn(?a,?b),
livesIn max 1 Place(?a)
-> wasBornIn(?a,?b)

expressing that “a person that only lived in one place
is assumed to have been born in this place” (where
livesIn max 1 Place is an anonymous concept
expression – a complex unary predicate) is out of the
scope for the AMIE+ representation.

3.3. Instantiation and prediction

Since the 3-tuple notation makes the fulfilment of
logical formulas less apparent, we have to formally in-

10It should be noted that some related approaches, which aim at
discovering rules that can be directly added to the ontology, such as
that by d’Amato et al. [26], represent the mining results in SWRL.
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Figure 1. Computation of measures of significance in AMIE+.

troduce an explicit operator for instantiation (which is
only introduced verbally in the AMIE+ paper).

Let the symbol ≺ denote the relationship between a
ground and non-ground formula such that the ground
formula is constructed from the non-ground one via
replacing all its variables with constants. We will say
that the ground formula instantiates11 the non-ground
one. The ground formula can be, in our context, either
a triple, or a conjunction of triples, or a ground rule
(with all of its atoms being triples). The non-ground
formula can be an atom, a conjunction of atoms, or a
rule. For the triple-to-atom case, e.g.:

〈<John>, <livesIn>, <Prague>〉 ≺ (?a <livesIn> ?b).

More formally, a ground formula fg instantiates a
non-ground formula fn if and only if there exists a
ground substitution θ = {V1/c1, . . . ,Vn/cn}, where
{V1, . . . ,Vn} are variables and {c1, . . . , cn} are con-
stants, such that the application of the substitution θ on
fn produces fg. We can say that fg instantiates fn under
θ.

For example, the particular substitution and its ap-
plication of the previous atom instantiation example
are:

θ = {?a/<John>, ?b/<Prague>} ,

(?a <livesIn> ?b)θ = 〈<John>, <livesIn>, <Prague>〉.
Note that if multiple atoms share the same predicate

then one triple can instantiate more than one atom (in
the conjunction) at the same time, e.g.:

〈<John>, <hasParent>, <Bob>〉 ≺

(?a <hasParent> ?b) ∧ (?a <hasParent> ?c)

11The use of the term ‘instantiation’ in this context should not be
mismatched with the notion of class instantiation with an individual,
expressed by the rdf:type property in knowledge graphs.

This effect is known as non-injective mapping. More-
over, injective mapping does not allow to replace mul-
tiple variables with a single constant, therefore, dupli-
cate triples can not occur after instantiation of a con-
junctions of atoms.12

Next, we have to define the notion of prediction. A
rule ~B ⇒ H predicts a triple t with respect to a given
knowledge graph KG if and only if t ≺ H under some
θ and there is a set of triples {t1, t2, . . . , tn} ∈ KG such
that (t1 ∧ t2 ∧ . . . ∧ tn) ≺ ~B under the same θ.

Note that t may or may not be in the KG. If t ∈ KG
then the rule correctly predicts t. If t /∈ KG then the
rule would incorrectly predict t under the CWA; how-
ever, under the OWA we cannot say if the prediction is
correct or incorrect.

3.4. Measures

Each rule mined from a particular KG has some sig-
nificance with regard to the chosen measure. Gener-
ally, in the context of rule mining, we use support and
confidence as the two main measures of significance.

The speed of discovering the desired rules depends
on minimising the search space including all possi-
ble rules. This can be achieved by efficient breadth-
first search, which prunes the branches that would not
yield rules matching the user-defined pruning condi-
tions such as the minimum support threshold.

3.4.1. Atom Size
One of the key functions used to calculate other

measures is size(A), which counts the number of

12Since non-injective mapping may cause under-estimation of the
confidence or over-estimation of the support, newer implementations
such as RDFRules as well as the very new successor of AMIE+,
AMIE 3 [42], thus allow to switch to injective mapping.
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triples in the KG that instantiate the given atom A. The
size(A) function is defined as

size(A) = #〈s, p, o〉 ∈ KG : 〈s, p, o〉 ≺ A,

where the # symbol refers to the number of distinct
triples. For example, size((?a <livesIn> ?b)) returns the
number of all distinct triples in the KG with predi-
cate <livesIn>, whereas size((?a <livesIn> <Prague>))
returns the number of all distinct triples in the KG with
predicate <livesIn> and object <Prague>.

Each rule has a head predicate size, shortly head
size, which is the number of triples from the KG hav-
ing the same predicate that occurs in the rule head:

hsize(~B⇒ (s p o)) = size((?a p ?b)).

For instance, in Figure 1, there is a simple example
showing several statements, a rule induced from them,
and its measures of significance. Notice that the head
predicate <diedIn> is present in three triples; therefore,
the head size of the rule is three. (In this particular case
it is equivalent to the size of the rule’s head, since the
head is free of constants.)

All rules returned by AMIE+ have to reach or ex-
ceed the minimum head size threshold minHS :

hsize(~B⇒ H) > minHS .

3.4.2. Support and Head Coverage
Support is a measure of significance used as the

main pruning threshold in AMIE+. In the context of
association rule mining, the support of a rule indicates
the number of transactions in the database that con-
form to this rule. The function for calculating the sup-
port measure is monotonous. This means that once new
atoms have been added to the body of a rule and the
rule length thus increases, the support of the rule de-
creases or remains unchanged. This property is cru-
cial for search space pruning. If a rule does not meet
the minimum support threshold and thus is considered
infrequent, then any extension of this rule, created by
appending one or more new atoms to its body, is also
infrequent (this is called the upward closure property)
[11]. Hence, a whole branch of infrequent extensions
can be skipped.

In AMIE+, the support measure is simply defined as
the number of correctly predicted distinct triples, i.e.,
the number of triples that instantiate the head atom H
given at least one conjunction of triples instantiating

the body ~B. The formal definition13 is as follows:

supp(~B⇒ H) = #〈s, p, o〉 ∈ KG : ∃t1, . . . , tn ∈ KG

: ((t1∧ . . . ∧tn)⇒ 〈s, p, o〉) ≺ (~B⇒ H)

In the example depicted in Figure 1, there is only one
triple instantiating the rule head,

〈<Alice>, <diedIn>, <Berlin>〉,

for which there is at least one connected triple instan-
tiating the body atom; therefore, the support is 1.

The relative value of support to the head size is
called head coverage (hc):

hc(~B⇒ H) =
supp(~B⇒ H)

hsize(~B⇒ H)
.

This measure has the value range from zero to one. The
minimal head coverage threshold minHC can be used
as the relative support threshold for the search space
pruning, where:

hc(~B⇒ H) > minHC.

3.4.3. Confidence
The support of a rule only indicates the number of

correctly predicted triples, but it does not convey the
quality of the prediction made by the rule, because it
disregards the false positives. In the context of associa-
tion rule mining, the main measure of predictive qual-
ity of a rule is confidence. It expresses the empirical
conditional probability of the head of the rule given
the body: p(H|~B). AMIE+ uses two variations of con-
fidence: the standard rule confidence and the Partial
Completeness Assumption (PCA) confidence.

The standard confidence is computed as the ratio of
support and body size (bsize):

conf (~B⇒ H) =
supp(~B⇒ H)

bsize(~B⇒ H)
,

where bsize is the number of distinct triples predicted
by the rule:

bsize(~B⇒ H) = #〈s, p, o〉 : ∃t1, . . . , tn ∈ KG

: ((t1∧ . . . ∧tn)⇒ 〈s, p, o〉) ≺ (~B⇒ H)

The standard confidence operates under the CWA.
That means if some predicted statement is missing in
the KG, it should be considered a negative example.

13Our definition is equivalent to the definition in the AMIE+ paper
[2], which uses the infix notation and relies on the first-order logic
semantics: supp(~B ⇒ r(x, y)) := #(x, y) : ∃z1, . . . zm : ~B ∧
r(x, y), with r corresponding to our p.
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However, the Semantic Web applications generally op-
erate under the OWA. Hence, for many KGs the stan-
dard confidence may not be appropriate [2].

For this purpose, AMIE+ defines the so-called PCA
confidence. A predicted statement 〈s, p, o〉 which is
missing in the KG is only considered a negative ex-
ample if the subject s already appears in the KG with
property p (and with some other object o′). For in-
stance, if the subject s does not have the property <is-
MarriedTo> within any triple, s may not necessarily
be unmarried. However, once we know of some triple
t′ = 〈s, <isMarriedTo>, o′〉, we can assume that the KG
involves all facts associated with subject s and predi-
cate <isMarriedTo>. As a consequence, all other miss-
ing statements related to this predicate and subject are
regarded as negative examples. The PCA confidence is
defined as:

conf pca(~B⇒ H) =
supp(~B⇒ H)

bsizepca(~B⇒ H)
,

where bsizepca is defined as follows. Let dsizeKG(p)
denote the number of unique subjects in the (empiri-
cal) domain of p in KG, i.e., #s : 〈s, p, o〉 ∈ KG,
and, analogously, rsizeKG(p) the number of unique ob-
jects in the (empirical) range of p in KG, i.e., #o :
〈s, p, o〉 ∈ KG. If dsizeKG(p) > rsizeKG(p) then we
can call the subject position the higher-cardinality side
of the predicate, and the object position will be the
lower-cardinality side. Then:

bsizepca(~B⇒ H) = #〈s, p, o〉 : ∃t1, . . . , tn, t′ ∈ KG

: ((t1∧ . . . ∧tn)⇒ 〈s, p, o〉) ≺ (~B⇒ H)

∧ t′ = 〈s′, p, o′〉

such that s′ = s if dsizeKG(p) > rsizeKG(p), and o′ =
o otherwise.

The motivation for altering the formula according
to the higher/lower cardinality of the predicate sides14

follows from the intuition that statements are typically
filled to RDF KGs starting from the higher-cardinality
side of a property, since the resource descriptions are
then smaller and more manageable. The PCA confi-
dence assumes that those smaller resource descriptions
have already been created as complete in terms of con-
taining all values of every property, for a given sub-
ject. The completeness may however not hold in the

14The AMIE+ paper rather speaks about the degree of ‘functional-
ity’ and ‘inverse functionality’ of the predicate, which may however
mix up with the corresponding boolean characteristics of properties
in ontologies.

opposite direction of the property. Therefore, if the ob-
ject position is the higher-cardinality position for some
property p (which is a situation less often observed
in practice, as Galárraga et al. [2] witnessed), bsizepca

checks if the object of the predicted triple is already
connected, using p, to some subject in the KG (for this
predicate) and not the other way around.

An example of PCA confidence is depicted in Fig-
ure 1. The empirical domain of (?a <diedIn> ?b) will
likely be larger than its empirical range, since a person
died at one location (at the given granularity, such as
that of a city) at the most, while many people typically
died at the same location. While there are three triples
instantiating the body of the rule (?a <wasBornIn> ?b),
i.e. the body size is three, only for two subjects of these
triples holds that there also exists at least one triple
containing the head predicate <diedIn>: both the stan-
dard and PCA confidence assume that the rule cor-
rectly predicts Alice’s death in Berlin and incorrectly
predicts Bob’s death in Prague). About the third sub-
ject <Carl> we have no record relating to his death; for
the standard confidence, his predicted death in Vienna
is counted as incorrect, which is however not the case
for the PCA confidence (note that Carl’s death record
may be just missing – perhaps the whole data snapshot
has been taken prior to his death – and he may still
have died in Vienna). Therefore the PCA confidence is
higher than the standard confidence, for this rule.

3.5. Rule Mining

Before the mining phase, all input parameters should
be pre-set with respect to a specific task. AMIE+ uses
three main input parameters that affect the speed of
mining the most: the maximum rule length, the mini-
mum head size minHS and the minimum head cover-
age threshold minHC. These input parameters can be
further extended by the minimum confidence threshold
(standard or/and PCA), constants that must occur in a
rule, the number of threads, and other rule constraints
mentioned in [2].

The AMIE+ algorithm (see Algorithm 1) first enu-
merates all atoms whose size is higher than the pre-
set head size threshold minHS (lines 4 to 8). All these
atoms become the heads of rules, and will be further
expanded. Each head is saved into a queue which col-
lects all potential rules to be either refined or moved
into the result set. The queue can be processed in par-
allel since each rule forms its own branch within the
search space and the refinement process does not al-
ter any previous state. Moreover, the input KG, from
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which the rules are constructed and measures counted,
is also immutable.

The algorithm gradually passes the rules from the
queue to the refine operation, which adds one atom at a
time to the body of the rule (line 15). The added atom
is either dangling (the output rule is open), or closing
(the output rule is closed), or containing a constant:

(rule before refinement)

∅⇒ (?a <wasBornIn> ?b),

(closing atom added)

(?a <livesIn> ?b)⇒ (?a <wasBornIn> ?b),

(dangling atom added)

(?a <livesIn> ?c)⇒ (?a <wasBornIn> ?b),

(instantiated atom added)

(?a <livesIn> <Prague>)⇒ (?a <wasBornIn> ?b).

The extended rule is further added into the queue only
if it exceeds the pre-set pruning thresholds (line 17).
The queue is being processed until it is empty. All
found rules which satisfy all mining constraints are
stored in the result set (lines 11 to 13). When refining
a rule, the algorithm calculates all the measures of sig-
nificance needed for pruning. Furthermore, the queue
is designed to eliminate any duplicate rules, thus mak-
ing the mining process much faster. For detailed infor-
mation about the mining algorithm refer to [2].

Algorithm 1. The basic workflow of AMIE+.

1 function AMIE(maxRuleLength, minHS, minHC, KG)
2 out = {}
3 queue = ()
4 for each predicate p : p ∈ t ∧ t ∈ KG do // t is a triple
5 if size((?a p ?b)) > minHS then
6 queue.enqueue(∅⇒ (?a p ?b))
7 end if
8 end while
9 while queue.nonEmpty do in parallel

10 rule = queue.dequeue()
11 if acceptedForOutput(rule) then
12 out += rule
13 end if
14 if length(rule) < maxRuleLength then
15 refinedRules = refine(rule)
16 for each newRule in refinedRules do
17 if hc(newRule) > minHC ∧ newRule /∈ queue then
18 queue.enqueue(newRule)
19 end if
20 end for
21 end if
22 end while
23 return out
24 end function

Figure 2. A sample of the SPO fact index.

3.6. Memory Indexing

To enable fast rule refinement and measure compu-
tation, the AMIE+ algorithm uses an in-memory index
containing all the triples of the analyzed KG. The in-
dex consists of six fact indices: SPO, SOP, PSO, POS,
OSP, and OPS. Each fact index is a hash table contain-
ing other, nested hash tables. For example, for the SPO
fact index, depicted in Figure 2, a subject s points to
a subset of predicates P where each predicate p ∈ P
points to a subset of objects O.

4. Limitations of AMIE+

As noted earlier, AMIE [46] and consequently
AMIE+ [2], constituted a breakthrough in rule min-
ing from RDF graph data. AMIE+ very well ad-
dresses the core of the rule mining problem – extract-
ing an exhaustive set of rules, given RDF data and
the right settings (typically user-set minimum sup-
port and confidence thresholds). At the same time, the
algorithm as well as the accompanying implementa-
tion pay relatively little attention to the problems of
data pre-processing, meta-parameter tuning, and post-
processing; these steps are assumed to be addressed by
external algorithms and software components.

Successful systems in the domain of rule mining
from tabular and transactional data, such as the popular
arules ecosystem [9], offer an integrated approach sup-
porting the complete data mining life cycle: from pre-
processing the input data to the selection of represen-
tative rules. Some other association rule learning pack-
ages also support automatic tuning of the rule learn-
ing meta-parameters, such as of the minimum support
threshold [47].

An integrated approach is even more necessary in
the linked data context as general algorithms for data
pre-processing are difficult to apply to RDF datasets
due to the different structure of inputs as well as out-
puts. For example, numerical attributes need to be
discretized (quantized, binned, categorized [48]) prior
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to association rule mining. Discretization – as a pre-
processing step – is supported in many libraries for
tabular or CSV data, yet to our knowledge, there is no
such tool for RDF triples.

Also, in the tabular or transactional context, it is
typically computationally feasible to pre-process all
available data. However, for RDF data such an non-
discriminative approach to pre-processing may be pro-
hibitively expensive. Instead, it is desirable to inte-
grate data pre-processing (such as discretization) di-
rectly into the mining algorithm, so that only the val-
ues that can prospectively appear in the generated rules
are processed.

Similar observations hold for the post-processing
of results. In association rule mining from tabular or
transactional data, it is sufficient for the mining algo-
rithm to support only coarse requirements on the rules
mined: it is computationally cheap to mine more rules
and then apply finer requirements on the content of the
mined rules within post-processing. However, the size
of RDF KGs and the richer expressiveness of Horn
rules make such an approach prohibitively expensive.
While AMIE+ was very fast in processing synthetic
benchmarks, as reported in [2], it may still be unusably
slow or memory-intensive in practical tasks where –
for example – the user does not know the precise min-
imum support threshold.

Some of the limitations described in this section do
not only call for enhancing or extending the function-
ality of AMIE+ as a tool but also to inefficiencies we
identified within the core AMIE+ algorithm. This is
the case of repetitive and exhaustive calculations per-
formed during the mining process.

Finally, some limitations relate to the lack of vari-
ous features which were found useful for mining rules
from transactional or tabular data. These include, such
as the support for rule mining with the top-k approach
or support for selection of most representative rules (by
clustering or pruning). Other limitations stem from ab-
sence of features generally required from systems pro-
cessing linked data, such as the support for multiple
graphs.

4.1. Inability to Process Numerical Data

Association rule learning algorithms do not work
well with numerical data due to the downward clo-
sure property, which requires that not only the com-
plete rule but also each subset of atoms composing
it should meet the minimum support threshold. Since
numeric attributes typically have many values, a sin-

gle distinct value may not assure the required support.
Such a value will thus be excluded from all generated
rules.

Consider an RDF dataset with prices of public con-
tracts. This dataset may include many facts containing
a particular price of a contract. Each of these facts con-
tains a numerical value at the object position related to
a specific contract, e.g.,

〈<Contract-1>, <hasPrice>, 40000〉.

If every contract has just one price which is unique in
the dataset, then any atom in the form (?a <hasPrice>
C), where C is a numerical constant, has the size of at
most one. In AMIE+, for a higher minimum support
threshold, the above-mentioned atom with the constant
will not be contained in any rule as a head atom due to
the small atom size. For a rule ~B⇒ H where the body
consists of only one atom with a constant, e.g.,

(?a <hasPrice> C)⇒

(?a <authority> <MinistryOfDefense>),

the atom size must be greater than or equal to the min-
imum support threshold. For more atoms in the body
the minimum size of an atom with a constant depends
on other atoms in the body and on user-defined thresh-
olds (more in 5.2).

An approach used to address this problem in associ-
ation rule learning frameworks for transactional data,
such as the arules library, is to replace multiple neigh-
bouring distinct values of a numerical attribute with an
interval of values.

4.2. Absence of the Top-k Approach

Decades of research in association rule learning and
frequent itemset mining continuously show how diffi-
cult it is for users to set the minimum support thresh-
old properly [49, 50]. Similarly to the standard associ-
ation rule learning, AMIE+ will generate all rules com-
plying with the user-set support threshold. A too-small
threshold leads to an enumeration of too many – mil-
lions and more – frequent itemsets (and consequently,
rules), eventually resulting in an out-of-memory situa-
tion. In contrast, a too high threshold value may return
no results.

Generating all rules already posed problems when
association rule learning was executed on transactional
databases like those collecting the contents of shop-
ping baskets in a supermarket, where the analyst could
still use their knowledge of the analyzed data to set
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these thresholds. This problem is further exacerbated
when data may be very large.

In the top-k approach, the user is only returned the
k rules with the highest values of the chosen measure,
rather than all rules. This approach allows additional
pruning strategies, alleviating or completely removing
the risk of combinatorial explosion, the biggest prob-
lems of association rule mining [49, 51].

4.3. Coarse Rule Patterns

Association rule learning tasks are in constant risk
for combinatorial explosion, even on small datasets.
This problem cannot be completely addressed by the
top-k approach alone. Without additional guidance by
the user, the top-k approach often generates rules that
reflect patterns in data that are obvious or uninterest-
ing for the user. For this reason, association rule learn-
ing frameworks provide various means for controlling
the content of the generated rules. For example, in the
arules library, the user can set a list of items (attribute-
value pairs) that can appear in the antecedent and con-
sequent of the generated rules. The LISp-Miner sys-
tem15 offers much ampler capabilities: it provides a
structure of an arbitrary number of granular patterns
that the rule must match in order to be generated.

AMIE+ adopts a similar approach to arules when it
allows the user to provide a list of relations that should
be included in (or excluded from) the body and head of
the rule. In addition, there are several linked data spe-
cific settings relating to constants. The user can choose
whether the constants are allowed, or even enforced, in
all atoms of the generated rules. This approach, which
is taken in AMIE+, does not take full advantage of
the RDF data model. In particular, it is not possible
to define independent, fine-grained constraints on sub-
jects, predicates, and objects appearing in the discov-
ered rules. For example, the user may wish to mine for
rules that contain a triple with a specific value in the
antecedent, such as:

(?a rdf:type dbo:Writer) ∧ · · · ⇒ (?a ? ?).

This pattern covers all rules where the consequent con-
tains variable ?a at the subject position, where ?a has to
cover an instance of the dbo:Writer class. Informally,
the user wishes to find all rules that involve writers.
Such a pattern cannot be enforced in AMIE+.

15http://lispimner.vse.cz

4.4. Repetitive Calculations

During the refinement process, AMIE+ binds vari-
ables to constants in order to count the support for
each fresh16 atom separately: AMIE+ first constructs
the closing atoms, then the dangling atoms and finally,
the instantiated atoms. For example, let the following
rule be subject to the refinement process:

(?a <livesIn> ?b)⇒ (?a <wasBornIn> ?b).

AMIE+ sequentially adds the fresh atoms (?a ?p ?b)
and (?b ?p ?a) as closing atoms, and (?a ?p ?c), (?c
?p ?a), (?b ?p ?c) and (?c ?p ?b) as dangling atoms, to
the rule body or head. Each newly added atom is con-
nected to the rule, and the variables ?p, ?a, ?b and ?c
are bound with constants in order to calculate the sup-
port measure and to enumerate the instantiated atoms.

This approach results in repetitive calculations,
mainly in terms of variables binding. For example, the
binding process starting from (?a <livesIn> ?b) and
(?a <wasBornIn> ?b) is performed repeatedly for each
fresh atom.

4.5. Exhaustive Calculations

AMIE+ first computes the value of support for each
refined rule, and only afterwards it applies the pruning
step based on a chosen support threshold. The same
technique is used for the confidence calculation, where
the algorithm first computes the confidence value and
then filters the rules using confidence thresholds.

Searching of all triples instantiating the rule, which
is necessary for computing the final value of confi-
dence and support, may be very expensive. The pro-
cess outlined above, used in AMIE+, can be made
more efficient by terminating this counting early when
it becomes clear that the final result of confidence or
support will not meet the threshold.

4.6. Lack of Support for Multiple Graphs

In Semantic Web terms, a KG identified by a spe-
cific IRI is called a named graph.17 Multiple graphs
can be part of one dataset if each triple has assigned
the information about association to a particular graph.
This structure is called a quad 〈s, p, o, g〉, where g is
the IRI of the graph. Same resources from various
graphs stored under different identifiers can be unified

16"Fresh" is a term used in [2] to denote a newly added atom.
17https://www.w3.org/TR/rdf11-concepts/

http://lispimner.vse.cz
https://www.w3.org/TR/rdf11-concepts/
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by interconnecting them using the owl:sameAs prop-
erty.

AMIE+ does not support mining across multiple
graphs such that one rule would contain resources from
two or more different graphs. Also, AMIE+ is not able
to resolve the owl:sameAs predicate to join resources
from two different namespaces. For example, consider
the following statements:

〈dbr:Sofia, owl:sameAs, nyt:N8209〉,

〈dbr:Sofia, rdf:type, dbo:PopulatedPlace, <dbpedia>〉,

〈nyt:N8209, rdf:type, opengis:Feature, <nytimes>〉.

AMIE+ would not be able to infer that

〈nyt:N8209, rdf:type, dbo:PopulatedPlace〉.

In AMIE+, to find this rule it would be necessary to
merge these statements into a single graph. However,
it is not possible to track the provenance of individ-
ual atoms in the discovered rules. Additionally, the dis-
covered rules would have to contain extra atoms corre-
sponding to the owl:sameAs relation, which can have
a significant impact on the time of rule mining [2].

4.7. Lack of Support for Rule Clustering and Pruning

Association rule discovery can result in the genera-
tion of a high number of potentially interesting rules.
Grouping – or clustering – of similar or overlapping
rules can be effective for presenting the mining results
in a concise manner to the end user.

Association rule learning frameworks, such as arules,
provide, for this purpose, measures that express the
similarity between association rules. Such support for
rule clustering is not provided in the scope of AMIE+.

Another approach for addressing the problem of too
many rules on the output is removal of some of the
rules based on analysis of their overlap with respect
to the input data. In rule learning literature, this super-
vised process is often called pruning [52]. While prun-
ing may not be applicable for explorative association
rule learning18, where the goal is to find all rules valid
in the data that match the user-defined interest mea-
sure thresholds, it is a key ingredient of adaptations of
association rule learning for classification [54].

Some search strategies supported by ILP systems,
such as ALEPH, are able to discover concise theories

18E.g., the motto of the GUHA rule learning framework [53] is
“GUHA offers everything interesting”, which translates as “all hy-
potheses of the given form true in the data”.

consisting of a small number of rules covering the in-
put KG. Achieving the same coverage, AMIE+ mines
all rules matching the user-specified mining thresholds
without any pruning strategies, which would remove
overlapping or redundant rules.

5. Proposed Approach

In the following, we present a collection of enhance-
ments to AMIE+ that address the limitations summa-
rized in the previous section.

5.1. Faster Projection Counting

AMIE+ recursively binds variables each time when
new atoms are added. The binding process is important
for finding valid connections to a rule being refined and
for calculation of the support measure. However, it has
a major impact on the overall mining time.

During the refinement process of a rule ~B ⇒ H,
AMIE+ constructs the set of new atoms An which in-
cludes all closing and dangling variants compatible
with the rule being refined. A new atom (x ?r y) ∈
An contains the relational variable ?r, which is not yet
bound, and the variables x and y, where each of them
either closes another variable or is dangling. For each
new atom, a count projection query is run. Further-
more, AMIE+ also runs the count projection query for
each dangling atom while searching for instantiated
rules.

The count projection query (described in Algorithm
2) binds all variables in the rule and enumerates all
bound variants of the newly added atom connected to
the rule with a cardinality. This process is inefficient
in that it may redundantly bind variables in atoms that
have already been mapped in the past (line 7 and 8).

Algorithm 2. The AMIE+ count projection query

1 function countProjections(A_n, ~B ⇒ H, k, KG)
2 out = {}
3 for each (x ?r y) ∈ A_n do
4 map = empty HashMap //where key is a predicate and value is an integer
5 q = ~B + H + (x ?r y)
6 for each 〈s, p, o〉 ≺ H : 〈s, p, o〉 ∈ KG do
7 q’ = bind(q, 〈s, p, o〉, H)
8 χ = select(?r, q’)
9 for each r ∈ χ do

10 if ¬map.contains(r) then map[r] = 1 else map[r]++
11 end for
12 end for
13 for each (r→ n) ∈ map : n > k do
14 out += ((x r y) ∧ ~B ⇒ H)
15 end for
16 end for
17 return out
18 end function
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The bind function (line 7) maps all variables of atom
H to constants of triple 〈s, p, o〉 and propagates this
binding to all shared variables in q. The select query
function (line 8) recursively binds all variables in q′

until all possible bindings for variable ?r are collected
and returned. The map is a hashtable containing the
cardinality for each binding of variable ?r. The cardi-
nality n must be at least k, where k is the minimum
support threshold (line 13).

In our approach, we try to reduce the number of
calls to the binding functions (in line 6 to 12 of Al-
gorithm 2). In the refinement process, the bindings of
the head atom H should be performed only once. This
process is described in Algorithm 3 within the refine
function, which returns the set of atoms to be added
into the rule being refined.

Algorithm 3. The RDFRules refinement process

1 function refine(~B ⇒ H, k, KG)
2 map = empty HashMap
3 q = ~B + H
4 maxSupp = 0
5 remainingSteps = size(H)
6 A_n = newAtomVariants(~B ⇒ H)
7 for each 〈s, p, o〉 ≺ H : 〈s, p, o〉 ∈ KG do
8 A_r = bindProjections(A_n, ~B, bind(q, 〈s, p, o〉, H), KG)
9 for each x ∈ A_r do

10 if ¬map.contains(x) then map[x] = 1 else map[x]++
11 maxSupp = max(map[x], maxSupp)
12 end for
13 remainingSteps = remainingSteps - 1
14 if maxSupp + remainingSteps < k then
15 return {}
16 end if
17 end for
18 return {(x ∧ ~B⇒H) : map[x] > k}
19 end function

The bindProjections function, described in Algo-
rithm 4, is called for each instance of the head atom
(lines 7 and 8). Notice that the binding is performed for
all added closing and dangling atom variants together
(lines 6 and 8). In each iteration, the bindProjections
function returns a set of atoms Ar, with a resolved re-
lation and an instantiated dangling variable, which is
connected to the current instance of the head H and to
the remaining atoms of the body ~B (line 8). At the end
of each iteration, the atoms from Ar are added to the
hashtable map and the atom cardinality map[x ∈ Ar] is
increased by one (line 10). Finally, we add only such
atoms to the rule for which map[x ∈ Ar] > k, where k
is the minimum support threshold (line 18).

Remark. If the Ar set is empty, the current binding
of the head 〈s, p, o〉 can be omitted within any other
refinements of subsequent rules having the basis of the
current rule.

The whole refinement process can be completed
faster if we know that none of the found atoms in a cer-
tain moment can reach the minimum support thresh-
old. The variable remainingSteps holds the number of
iterations that still have to be done within the count
projections query (lines 7 to 17). If

maxSupp + remainingSteps < k,

where maxSupp is the support value of a new atom
with the highest cardinality, we can immediately ter-
minate the refinement process since adding none of the
atoms will lead to reaching or exceeding the support
threshold k (line 14 to 16).

Algorithm 4. The RDFRules bind projections query

1 function bindProjections(A_n, ~B, q, KG)
2 A_r, A_c, A_b = {}
3 // PHASE I
4 for each (x ?r y) ∈ A_n do
5 if z ∈ {x, y} : z ∈ q ∨ isDangling(z) then
6 A_c += (x ?r y)
7 else
8 A_b += (x ?r y)
9 end if

10 end for
11 // PHASE II
12 if ¬isEmpty(A_c) ∧ exists(q) then
13 for each (x ?r y) ∈ A_c do
14 A_r = A_r ∪ bindFreshAtom((x ?r y), q)
15 end for
16 end if
17 if ¬isEmpty(A_b) then
18 // PHASE III
19 best = argmin_i(size(B_i ∈ ~B)) // B_i is the i-th atom of ~B
20 for each (x ?r y) ∈ A_b do
21 if size((x ?r y)) 6 size(best) then
22 χ = bindFreshAtom((x ?r y), q)
23 for each (x p y) ∈ χ do
24 q’ = bind(q, p, (x ?r y))
25 if exists(q’) then A_r += (x p y)
26 end for
27 A_b = A_b \ (x ?r y)
28 end if
29 end for
30 if ¬isEmpty(A_b) then
31 // PHASE IV
32 for each 〈s, p, o〉 ≺ best : 〈s, p, o〉 ∈ KG do
33 A_r = A_r ∪ bindProjections(A_b, ~B - best, bind(q,〈s, p, o〉,best), KG)
34 end for
35 end if
36 end if
37 return A_r
38 end function

The bindProjections function invocation is com-
posed of four phases. In the first phase, new atoms are
divided into two sets: bound atoms Ab and unbound
atoms Au (lines 4 to 10). All variables of the atoms in
Ab can be immediately bound by the function bindFre-
shAtom in the second phase (line 12 to 16). This func-
tion returns the set of instantiated atoms with all pos-
sible relations and instantiated variables with respect
to variables so far bound in q. In this phase, the bind-
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ing is valid only if there exists a binding for all re-
maining unbound variables in q where all atoms are
connected (line 12). In the third phase, which is per-
formed only if Ab is not empty, the best unbound atom
with the smallest size is selected from ~B (line 19). For
each unbound atom from Au with a smaller size than
size(best), the binding process is performed, and the
connectivity with other atoms is checked as in the sec-
ond phase (lines 20 to 29). If Ab is still not empty after
the third phase, then the fourth phase is performed. In
the fourth phase, the best atom is bound with a partic-
ular instance, and the bind projection query is recur-
sively called with this new binding, without the best
atom in ~B and with remaining unbound atoms from Au

(lines 32 to 34). The recursion is stopped after all fresh
atoms have been resolved (Ab is empty). All resolved
atoms are saved into Ar and returned on line 37.

This approach eliminates a considerable number of
repetitive calculations and makes AMIE+ much faster,
especially for mining of rules with constants (see eval-
uation in Section 7).

5.2. Processing of Numerical Attributes

As noted in Section 4.1, the standard solution used
for handling numerical data in association rule mining
is to perform the discretization (or binning) of numeric
values with low frequencies into intervals. This step
not only reduces the search space, but can also increase
the support of some rules.

The proposed approach is performed within pre-
processing, however, it is not completely decoupled
from the mining phase. In order to avoid generation
of intervals that are too narrow or unnecessarily broad
for the purpose of the mining task, the user needs to
provide the minimum head coverage threshold minHC
and minimum head size threshold minHS as parame-
ters to the pre-processing algorithm. These thresholds
are then used to inform the discretization process.

5.2.1. Preliminaries
Data Type Determination As a first step, all predi-
cates that have a numerical range have to be found.
Most RDF serializations allow to directly encode data
types, but it is up to the data producer to make use of
this feature. Data types can also be determined from
associated RDF vocabularies, which contain informa-
tion about the range of the predicates.

Equal-Frequency Binning Equal-frequency binning
is a common approach for discretizing numerical data
for association rule learning, e.g., it is the default dis-

cretization method in the popular arules package. In
the following, we discuss how this approach can be
adapted for discretizing data in knowledge graphs.

In the context of our approach, the frequency of an
interval I of predicate p is calculated as size((?a p I)),
where each triple 〈s, p, o〉 ∈ KG instantiates the atom
(?a p I) if o is in the range of I. Let Lp be the sorted
list of numerical objects of predicate p. Intervals are
gradually constructed by merging the numerical val-
ues from the smallest number to the largest number of
Lp until the frequency of the currently expanded in-
terval reaches or exceeds a predefined threshold. The
next interval is constructed from the largest number of
the previous interval, as the excluded endpoint, by the
same way. If the last interval does not reach the re-
quired frequency, it is merged with the previous inter-
val. For example, the sorted list

L<hasGrade> = (1, 1, 2, 2, 2, 3, 3, 4, 4, 5)

can be divided into two equal-frequent intervals with
respect to the discretization threshold 5:

I[1; 2] = (1, 1, 2, 2, 2)

I(2; 5] = (3, 3, 4, 4, 5).

Discretization in the Rule Head Let an instantiated
atom Hi = (?a p C), containing a numerical literal C,
be derived from an atom H = (?a p ?b). To ensure
that atom Hi can appear as the consequent of a rule,
the following inequality must be true:

size(Hi) > size(H) · minHC, (1)

where size(H) > minHS . This observation is bene-
ficial for merging numerical values in atoms into in-
tervals, e.g., by the equal-frequency binning in order
to reach the minimum support threshold required for a
head with a constant. A constructed interval I should
be broadened until the atom (?a p I) satisfies the con-
dition in Eq. 1.

Discretization in the Rule Body The minimum sup-
port threshold depends on the minimum head coverage
threshold and the head size of the rule; therefore, there
are different minimum support thresholds for different
heads. In AMIE+, the support is the number of correct
predictions of the rule. Consider a rule with one atom
A in the body. Such a rule predicts as many triples as
is the size of this atom; therefore, if the following con-
dition for the size of the atom A is not met, such a rule
cannot reach or exceed the minimum support thresh-
old:

size(A) > hsize(A⇒ H) · minHC. (2)
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This condition can be used to merge the numerical
value in atom A with neighbouring values into an in-
terval I. Values are merged until the frequency of this
interval is greater or equal to the minimum support
threshold. Compliance to this condition ensures that
for a rule containing only the atom (?a p I) in the body
the number of predicted triples will be greater than or
equal to the minimum support threshold. However, not
all of the predicted triples will be necessarily predicted
correctly – the predictions will not match the head of
the rule; therefore, if an atom complies to the condi-
tion in Eq. 2, it is not guaranteed that the support of a
rule including this atom will be high enough to meet
the support threshold.

Note that even if an atom does not meet the con-
dition in Eq. 2, a rule containing this atom can still
meet the minimum support threshold if this rule con-
tains more than one atom in the body. For example,
consider the following rule:

(?a <wasBornIn> ?b) ∧ (?b <hasArea> 232.14)⇒

(?a <diedIn> ?b)).

If the size of the atom (?a <hasArea> 232.14) is lower
than the minimum support threshold, then the whole
rule can still reach or exceed this threshold since the
atom is connected to another atom, which can have a
larger size.

5.2.2. Proposed Discretization Heuristic
In the previous, we showed that – given the minHC

and minHS thresholds and considering only rules with
at most one atom in the body – a head atom and a
body atom need to satisfy the requirements in Eq. 1
and Eq. 2, respectively, to be included in a rule. While
these conditions are quite restrictive – in practice, min-
ing tasks will involve also other measures of signifi-
cance and longer rules – we use these conditions as a
basis of the proposed general heuristic to guide interval
generation in the pre-processing phase.

Let P be a set of predicates occurring in the in-
put KG that is constrained by the minimum head size
threshold:

P = {p : size((?a p ?b)) > minHS }.
We define the lower bound of the minimum support
threshold as:

MinSuppL = min
p∈P

(size((?a p ?b))) · minHC.

In the proposed heuristic, the frequency of any con-
structed interval I must be greater than or equal to
MinSuppL. In other words, the lower bound MinSuppL

Figure 3. An example of the tree of intervals for some predicate
where MinSuppL = 3 and MinSuppU = 5.

expresses the minimum possible atom size require-
ment for an atom A containing an interval I at the ob-
ject position to be included in the rule with the smallest
head size:

size(A) > MinSuppL (3)

We define the upper bound of the minimum support
threshold. This expresses the maximum possible atom
size requirement for an atom A containing an interval
I at the object position to be included in the rule with
the highest head size.

MinSuppU = max
p∈P

(size((?a p ?b))) · minHC.

Once MinSuppL and MinSuppU have been computed
based on the user-set minHC and minHS thresholds,
we can use these values to create a tree of intervals for
each numerical predicate in the input KG.

Tree of Intervals Suppose we want to discretize the
list Lp of all numerical values related to a predicate p.
First, we aggregate all numerical values from Lp to the
root of the tree, which is denoted as the zero-level in-
terval I0

p with the range from the minimum value to the
maximum value of Lp. We recursively split each inter-
val Ii

p into two smaller equal-frequent intervals I1i+1
p

and I2i+1
p . If the frequency of a newly constructed in-

terval Ii
p does not satisfy the MinSuppL condition in

Eq. 3 (where A = (?a p Ii
p)), the splitting is stopped

and the interval is discarded. Finally, the algorithm
cuts off intervals whose all children have the interval
size greater than or equal to MinSuppU . An example of
a tree of intervals is depicted in Figure 3.

Data Enrichment All created intervals generate new
triples which are added into the input KG in the
pre-processing phase before mining. For each triple
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〈s, p, o〉 ∈ KG and each node Ii
p of the tree of intervals

related to the predicate p, we add a new triple 〈s, pi, Ii
p〉

into the input KG if the number o is in the range of Ii
p

and the interval covers more than one number.
The original data in the KG are preserved, since the

newly added triples containing intervals use a differ-
ent predicate (namely, one equipped with a tree-level
suffix). Hence, this solution does not reduce the search
space of the rule mining algorithm but rather expands
it.

Discussion For any atom containing an interval with
the size lower than MinSuppL the conditions in Eq. 1
and Eq. 2 cannot be met. Conversely, if an atom has a
size greater than or equal to MinSuppU the conditions
in Eq. 1 and Eq. 2 are satisfied for any head of a rule;
therefore, it is not necessary to create intervals with a
higher frequency.

The lower and upper bounds reduce the number of
constructed intervals and thus limit the overall increase
in the size of the enrichment of the input KG generated
by discretization. Nevertheless, the heuristic can incor-
rectly skip intervals with a low frequency, since, as pre-
viously discussed, if a body with more than one atom
is considered, atoms with size lower than MinSuppL
can still be included in the rule to satisfy the minimum
support threshold. Conversely, if an atom containing
an interval satisfies the condition in Eq. 2, the whole
rule containing this atom must still correctly predict
as many triples as required by the minimum support
threshold. More potentially useful or interesting rules
could, therefore, be generated if the MinSuppL and
MinSuppU thresholds were not applied.

Despite these limitations, the experiments (cf. Sec-
tion 7.4) showed that the proposed merging of nu-
merical values results in discovery of many new rules
which contain predicates that would never appear in
the output when mining directly from the original data.

5.3. Multiple Graphs

Efficiently working with multiple graphs requires
data structures supporting quads throughout the learn-
ing process. In AMIE+ this is not supported – the re-
sulting rule always consists of atoms corresponding to
triples.

In our approach, atoms in a rule may be extended
with a fourth item that indicates the graph assignment;
such an extended rule is called a graph-aware rule.
This additional item is always generated as a specific

graph resource and not as a variable. For instance,

(?a <wasBornIn> ?b <YAGO>)⇒

(?a dbo:deathPlace ?b <DBpedia>).

The discovery of such a rule of course depends on
the previously established identity of the resources
across the used graphs. For instance, this condi-
tion is not met for concepts in YAGO and DB-
pedia, because the YAGO resource <Prague> has
a different description than the DBpedia resource
<http://dbpedia.org/resource/Prague> (abbreviated as
dbr:Prague). Assuming that a source of triples with the
owl:sameAs predicate are given, this inconsistency can
be resolved by owl:sameAs predicate, which would
join these two descriptions:

〈<Prague>, owl:sameAs, dbr:Prague〉
Support for named graphs needs also to be reflected

in the user-set pattern for rule learning. Before min-
ing, the user can decide which atoms (or, how many
of them) will be only based on triples from a certain
graph, or whether to enable graph-aware mining at all.
For example, the user can define the following pattern
of a mining task where all rules have to consist of parts
belonging to various graphs:

(?a ? ?b <YAGO>)⇒ (?a ? ?b <DBpedia>).

This pattern is applied in the mining process, which re-
turns only such matching rules where the body atom is
from YAGO, and the head is from DBpedia. The nota-
tion used in the pattern above is introduced in detail in
the following Section 5.4.

The inclusion of graph information in the rule min-
ing process also requires an extension of fact in-
dices, described in 3.6. These indices allow to check
the affiliation to a given graph in constant time for
all predicates (PG), predicate-subject pairs (PSG) and
predicate-object pairs (POG), and for any predicate-
subject-object triples (PSOG).

5.4. Improvements to Expressiveness of Rule Patterns

AMIE+ only provides basic capabilities for restrict-
ing the content of the generated rules. These are gener-
ally limited to providing a list of predicates that can ap-
pear in the antecedent and consequent of the generated
rules. Inspired by the LISp-Miner system, we defined
a formal grammar-based pattern language (used in the
RDFRules framework) for expressing more complex
rule patterns in order to find desired rules for a specific
task.
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Consider IPG = (N,Σ,Π,Θ, P, S ) as the item pat-
tern grammar to generate any valid pattern for an atom
item, e.g., grammar for items p, s and o in atom (s p
o). N is a set of all non-terminal symbols, Σ is a set of
all terminal symbols for resources and literals occur-
ring in the input KGs, Π is a set of all terminal symbols
for variables, Θ is a set of all special terminal symbols
especially for grouping, P is a set of all grammar rules
applicable in this grammar, and S is the start symbol
representing the whole item pattern:

N = {A, B,C},

Σ = constants from input KGs,

Π = {?a, ?b, . . . , ?z},

Θ = {?, ?v, ?c,¬, [, ]},

P = {A→ ?; A→ ?v; A→ ?c;

A→ x ∈ Π; A→ x ∈ Σ;

B→ A; B→ B, B;

C → A; C → [B]; C → ¬[B]},

S = {C}.

Symbol ? is a pattern for any item, symbol ?v is a pat-
tern for any variable and symbol ?c is a pattern for any
constant. A concrete variable is written as a single al-
phabetic character prefixed by symbol ?. All these ter-
minal patterns are expressed by the non-terminal sym-
bol A. A pattern collection B, where one of the in-
ner patterns must match an item, is constructed inside
square brackets, e.g, [<Prague>, <Berlin>]. The com-
plement of this collection, where none of the inner pat-
terns must match an item, is prefixed by symbol ¬, e.g,
¬[<Prague>, <Berlin>].

A rule pattern RP is an implication, where the right
side contains just one head atom pattern and the left
side consists of a conjunction of body atom patterns:

RP = AP1 ∧ . . . ∧ APn ⇒ APh.

Let item pattern IP be generated by the IPG gram-
mar. The atom pattern AP is defined by the 4-tuple in-
cluding four item patterns for subject, predicate, ob-
ject, and graph:

APn3 = (IPs IPp IPo IPg) | (IPs IPp IPo).

If the last graph item pattern IPg is not used, it may be
omitted. Here is an example of a valid rule pattern and
some matching rule:

(a rule pattern)

(?a <wasBornIn> ?b) ∧

(?b ?c ?c <DBpedia>)⇒

(?a [<livesIn>, <deadIn>] ?b),

(a matching rule)

(?a <wasBornIn> ?b) ∧

(?b dbo:isCityOf <USA> <DBpedia>)⇒

(?a <deadIn> ?b).

During the mining process, rules are pruned based
on all input rule patterns. A rule pattern RP is applied
from right to left as well as the rule refinement process.
For example, rules with length = 1 (with an empty
body) are pruned if their heads do not match the head
atom pattern. Subsequently, rules with length = 2 are
pruned if their first atom from the right direction of the
body does not match the first body atom pattern from
the right direction.

5.5. Top-K Approach

In the top-k mode, the result set contains at most k
rules with the highest value of a chosen measure. This
mining strategy alleviates the user from searching for
the right mining threshold, and can also substantially
reduce the mining time.

Our proposal is a variation on the top-k approach
introduced by Wang et al. [51] for mining top-k fre-
quent itemsets with the highest support from transac-
tional data. The main mining phase includes searching
for rules reaching a support threshold derived from a
given head coverage threshold. If the support thresh-
old or the head coverage is unknown we may set a k
value as the maximum number of rules to be returned.
For this case, the mining algorithm saves all found ap-
propriate rules into a priority queue with fixed length
k, where the head of this queue (the head rule) is the
rule with the lowest head coverage. Once the capacity
of the queue is reached the minimum support thresh-
old is set to the head coverage of the head rule. Then
the following rules are pruned based on this support
threshold. At the moment when some new rule has its
head coverage greater than the minimum, the head rule
is removed from the queue, and the new rule is added.
Then the minimum support threshold is modified by a
next head element in the queue (see Figure 4). The sup-
port threshold is continuously increasing during min-
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Figure 4. The top-k strategy using a priority queue with modification
of the minimum support threshold.

ing and the result set always contains at most k rules
with the highest head coverage.

The same strategy can be used for confidence calcu-
lation from a set of rules. Let k be the maximum length
of the result rule set with highest confidences (stan-
dard or PCA). Once the capacity of the priority queue
has been reached, the lowest confidence of the head
rule is used as the minimum confidence threshold. This
threshold is continuously increasing if the following
rules have a higher confidence value.

Increasing the minimum confidence threshold min-
Conf is important since it may speed up the confidence
calculation. If the minConf value is set, then the fol-
lowing inequality must apply:

bsize(~B⇒ H) 6
supp(~B⇒ H)

minConf
.

During the calculation of the body size, we can im-
mediately stop the process as soon as the body size
value is greater than the ratio between the rule support
and minConf, because the rule is then guaranteed to
have its confidence lower than minConf.

5.6. Rule Clustering

In order to cluster the rules, it is necessary to have
some means of determining the similarity between an
arbitrary pair of rules. The rule similarity can be com-
puted from rule features, such as the content of the rule
and the values of measures of significance.

Let the rules be represented with a matrix Rn×m,
where rows correspond to individual rules and columns
to features of them. For each i-th feature, there is a
similarity function simi(·, ·). The similarity between
two rules, R1 and R2, is computed as:

sim(R1,R2) :=

m∑
i=1

wi · simi(R1,i,R2,i),

where wi is a weight of the feature i. The weights have
to be normalized:

m∑
i=1

wi = 1.

It is straightforward to compare the measures of sig-
nificance of two rules, e.g., the head coverage or the
confidence values, as two numerical features. Never-
theless, in practice, for example within the arules li-
brary [9], rule clustering is mainly performed with re-
spect to the rules content, in particular, using the simi-
larity of atoms and their parts. Hence, for this purpose,
we defined several similarity functions taking into ac-
count the content of the Horn rules.

Let an atom of a rule consist of a predicate p and
of two atom items in the position of subject s and ob-
ject o. These two atom items are either variables or
constants. The similarity function between two atom
items, s1 and s2 (or, analogously, o1 and o2) from the
atoms (s1 p1 o1) and (s2 p2 o2), returns one of the
three pre-defined values:

simt(s1, s2) =



1 if (s1 = s2 ∧ @x ∈ {s1, s2}
: IsVar(x)) ∨ (p1 = p2 ∧
∀x ∈ {s1, s2} : IsVar(x)),

0.5 if s1 6= s2 ∧ p1 = p2 ∧
∃x∃y ∈ {s1, s2}
: IsVar(x) ∧ ¬IsVar(y),

0 otherwise,

where IsVar(x) is a function determining whether the
atom item x is a variable. The result of the simt func-
tion also depends on the predicates p1 and p2 of the
atoms in which s1 and s2 (o1 and o2, respectively)
are contained. For instance, the similarity between the
constant <Prague> and the variable ?b in atoms (?a
<livesIn> <Prague>) and (?a <livesIn> ?b) is 0.5, since
the items are not identical but the <Prague> constant
can instantiate variable ?b.

The similarity function for two predicates only tests
their equality.

simp(p1, p2) =

®
1 if p1 = p2,

0 otherwise.

For the atoms a1 = (s1 p1 o1) and a2 = (s2 p2 o2)
we are able to compute the atom similarity based on
their item similarities.

sima(a1, a2) =
1

3
(simt(s1, s2) + simt(o1, o2)

+ simp(p1, p2)).
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Rule A is ranked higher than rule B

1. if conf(A) > conf(B),
2. if conf(A) = conf(B) and hc(A) > hc(B),
3. if rule A has the shorter body (fewer atoms)

than rule B.

Listing 1. Rule ranking criteria for rule pruning.

Suppose two rules U and V , where U has the length
greater than or equal to the length of V , |U| > |V|.
To calculate the content similarity of these rules, the
rules U = (u1, . . . , u|U|) and V = (v1, . . . , v|V|) are re-
garded as sequences of atoms with the head atom and
body atoms grouped together in any order. From all k-
permutations of U, notated as P(U, k), the maximum
similarity is taken for k = |V|. The similarity of each
permutation is computed as the sum of atom similar-
ities between atoms from the permutation and atoms
from V with the same index of the given sequences.
The maximum similarity is normalized by the length
of V:

simc(U,V) =
1

|V|
max

T∈P(U,|V|)

|T |−1∑
i=0

sima(ti, vi).

While the generation of permutations (allowing to
fit the two rules to one another) may look computa-
tionally demanding, for the rule lengths considered by
RDFRules this overhead does not seriously impact the
clustering performance, as witnessed by the experi-
ments.

5.7. Rule Pruning

For selection of the most representative rules from
the list of mined rules we propose to adapt data cov-
erage pruning, which is a technique that is commonly
used in association rule classification [54].

This technique, described in Algorithm 5, processes
input rules in the order specified in Listing 1. For each
rule, the algorithm checks whether the rule correctly
predicts at least one triple in the input KG (line 10). If
it does, the rule is kept and the triple is discarded (for
the purpose of pruning). If the rule does not classify
any (remaining) triple correctly, it is discarded.

In the list of rules mined by AMIE+, it is often the
case that a single triple is correctly predicted by multi-
ple rules. After data coverage pruning, many rules are
removed, but it is still ensured that the reduced set of

rules predicts the same set of triples as the original rule
set (this is empirically evaluated in Section 7.7). Also,
on transactional data, it has been empirically shown
that the data coverage pruning (in combination with
default rule pruning19) reduces the number of input
rules by up to two magnitudes, while maintaining good
classification performance. For example, experiments
performed on 26 datasets, reported in [55], showed
that, on average, 35.140 input rules were pruned into
69 final rules.

Algorithm 5. Rule data coverage pruning

1 function dataCoveragePruning(rules, KG)
2 KG’ = KG
3 rules = sorted rules according to criteria in Listing~1
4 prunedRules = ()
5 for each (~B ⇒ H) ∈ rules do
6 rulePredictsNewTriples = false
7 for each θ : ~Bθ = (t_1∧ . . .∧t_n) ∧ t_1, . . . , t_n ∈ KG do
8 // where θ is the substitution defined in Sec. 3.3
9 t_h = Hθ

10 if t_h ∈ KG’ then
11 KG’ = KG’ \ t_h
12 rulePredictsNewTriples = true
13 end if
14 end for
15 if rulePredictsNewTriples then prunedRules += (~B ⇒ H)
16 end for
17 return prunedRules
18 end function

6. RDFRules: Reference Implementation

While AMIE+ constitutes a breakthrough approach
for rule learning from RDF data, the implementation
accompanying the paper of Galárraga et al. [2] has
several limitations in terms of practical usability com-
pared to modern algorithmic frameworks for associ-
ation rule learning from tabular datasets, such as the
arules package for R [9], or Spark MLlib.20

In this section, we briefly describe a new framework
for rule mining from RDF KGs called RDFRules,
which is the reference implementation of the enhance-
ments to AMIE+ described in the previous section, and
is also used in our benchmarks (see Section 7).

19The well-known Classification Based on Associations (CBA)
algorithm [55] essentially corresponds to data coverage pruning
combined with ’default rule pruning’. In default rule pruning, during
the pruning process, we keep track of which rule led to the smallest
number of misclassifications, when all rules ranked lower than this
rule are replaced by a default rule assigning the most frequent class
among the remaining instances.

20https://spark.apache.org/mllib/

https://spark.apache.org/mllib/
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RDFRules is freely available under the GPLv321

open-source license and is hosted on GitHub22.

6.1. Overview

The core of the reference RDFRules implementa-
tion is written in the Scala language. In addition to the
Scala API, it also has a Java API, a RESTful service
and a graphical user interface (GUI), which is avail-
able via a web browser. The Scala and Java APIs can
be used as frameworks for extending another data min-
ing system or application. The RESTful service is suit-
able for modular web-based applications and remote
access. Finally, the GUI based on the RESTful service,
can be used either as a standalone desktop application
or as a web interface used to control the mining service
deployed on a remote server. All modules are shown in
Figure 5.

6.2. Architecture

The architecture of the RDFRules core is composed
of four main data structures: RDFGraph, RDFDataset,
Index, and RuleSet. These structures are created in the
listed order during the RDF data pre-processing and
rule mining. Inspired by Apache Spark, each structure
supports several operations which either transform the
current structure or perform some action.

Transformations The data structures are formed in
the following order:

RDFGraph∗ → RDFDataset→ Index→ RuleSet

All the transformations are lazy23 operations. A trans-
formation converts the current data structure to a target
data structure. The target data structure can be either of
the same type or of the succeeding type. For example,
a transformation of the RDFDataset structure creates
either a new RDFDataset or an Index object.

Actions An action operation applies all pre-defined
transformations on the current and previous structures
and processes the (transformed) input data to create
the desired output, such as rules, histograms, triples,
statistics, etc. Compared to transformations, actions
may load data into the memory and perform time-
consuming operations. Actions are further divided into

21https://www.gnu.org/licenses/gpl.txt
22https://github.com/propi/rdfrules
23A lazy transformation is not evaluated until a result of the trans-

formation is required within an action.

the streaming and batch ones. The streaming actions
process data as small chunks (e.g., triples or rules)
without large memory requirements, while the batch
actions need to load all the data or a big part thereof
into the memory.

Caching If several action operations are applied, e.g.,
with various input parameters, on the same data and
with the same set of transformations, then all the de-
fined transformations would normally be performed
repeatedly for each action. This is caused by the lazy
behavior of the data structures and the streaming pro-
cess lacking the memory of previous steps. RDFRules
eliminates those redundant and repeating calculations
by caching the accomplished transformations. Each
data structure has a cache method that can perform
all the defined transformations immediately and store
the result either into the memory or on the disk. The
stored information can be reused when the already
transformed data is to be further processed.

6.3. Graphs and Datasets

The RDFGraph structure is built once we load an
RDF graph from either a file or a stream of triples or
quads. For input data processing the RDFRules im-
plementation uses modules from the Apache Jena24

framework, which supports a range of RDF formats in-
cluding N-Triples, N-Quads, JSON-LD, TriG or TriX.
Besides these standard formats, RDFRules also has its
own native binary format for faster serialization and
deserialization its data structures (like rules, triples,
and indices) on/from a disk for later use. During data
loading, the system creates either one or multiple RD-
FGraph instances. Multiple instances are created when
the input data format supports and uses named graphs.

An RDFGraph instance corresponds to a set of
triples, on which applicable transformation operations
are defined. These operations include filtering the
triples using a condition, replacement of selected re-
sources or literals, and merging numeric values using
discretization algorithms. The transformed data may
be exported to an RDF file. Several further operations
focus on data exploration. These include the state-
ments aggregation on histograms of triple items, the
predicate ranges determination, and the triples count-
ing.

The RDFDataset structure is created from one or
more RDFGraph instances. It is composed of quads

24https://jena.apache.org/
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(a) Available interfaces (b) Main data structures and processes

Figure 5. Architecture of RDFRules.

where the triples are additionally associated with a par-
ticular named graph. This data structure supports trans-
formation of all triples/quads within a dataset, as well
as in the case of a single graph, with or without regard
to the graphs assignment.

6.4. Indexing

Before the mining, the input dataset has to be in-
dexed in the memory, which allows for the fast enu-
meration of atoms and computation of the measures of
significance.

In the first phase of the indexing, each element of the
triples, whether an identifier or a literal, is mapped into
a unique number. This mapping is stored in a special
hash map and eliminates any duplicates.

In the second phase of the indexing, the program
only deals with the mapped numbers and creates the
six fact indices described in Section 3.6. These indices
are in one of the two modes: preserved or in-use. The
preserved mode keeps the data in the memory for the
whole duration of the index object, whereas the in-use
mode only loads the data into the memory if the index
is needed and after the use of the index, the memory is
again released.

The Index instance can be created from the RDF-
Dataset structure or loaded from the cache. The image
of the fact indices can, therefore, be saved on the disk
for further reuse. The Index structure contains the pre-
pared data and has operations for rule mining using the
AMIE+ algorithm.

Table 1
Available user-defined pruning thresholds used in the mining process
in RDFRules.

MinHeadSize Minimum number of triples instantiating
the rule head

MinHeadCoverage Minimum head coverage

MinSupport Minimum absolute support

MaxRuleLength Maximum length of a rule

TopK Maximum number of returned rules sorted
by head coverage

Timeout Maximum mining time in minutes

6.5. Rule Mining

RDFRules implements the extensions to the AMIE+
rule mining algorithm covered in Section 5. Besides
the indexed data itself, the values of three kinds of
parameters also enter the mining phase in RDFRules;
these parameters are (pruning) thresholds, rule pat-
terns, and constraints.

Pruning Thresholds In addition to the thresholds de-
fined in AMIE+, RDFRules also offers the top-k ap-
proach (see Section 5.5), and the timeout threshold,
which determines the maximum mining time. All the
mining thresholds are listed in table 1. Notice that the
list of thresholds does not contain any confidence mea-
sures. These additional measures of significance can
only be calculated after the main mining phase within
the RuleSet structure.

Rule Patterns All the mined rules must match at least
one pattern defined in the list of rule patterns. If the
user has an idea of what kinds of atoms the mined
rules should contain, this information can be defined
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through one or several rule patterns. The grammar of
the rule pattern is described in Section 5.4. Since the
process of matching the rules with patterns is per-
formed during the mining phase, the enumeration of
rules can be significantly sped-up.

We can define two types of rule pattern: exact and
partial. The number of atoms in any mined rule must
be the same as in the exact rule pattern. For a partial
pattern, if some rule matches the pattern, all its refined
extensions also match the pattern.

Constraints Finally, the last mining parameter speci-
fies additional constraints, thus further shaping the out-
put of the mining. Here is a list of the implemented
constraints that can be used:

– OnlyPredicates(x): the rules may only contain the
predicates from the set x.

– WithoutPredicates(x): the rules must not contain
any of the predicates from the set x.

– OnlyVariablesAt: restricts to rules where con-
stants are disabled at an atom position or all atom
positions.

– WithoutDuplicatePredicates: disallows rules con-
taining the same predicate in more than one atom.

– GraphAwareRules: the atoms in the discovered
rules will be extended with information on their
graph of origin.

Mining The mining process can be run in different
behavior modes, with respect to the entry thresholds
and constraints. Compared to the pure AMIE+ im-
plementation, RDFRules does not calculate the con-
fidence while browsing the search space of possible
rules, thus saving time. Additionally, it applies vari-
ous extensions described in Section 5. The rule mining
process is performed in parallel (see Algorithm 1) and
tries to use all available cores.

The mining result is an instance of the RuleSet struc-
ture which contains all the mined rules conforming to
the input restrictions.

6.6. Rule Post-Processing

The RuleSet is the last defined data structure in the
RDFRules workflow. It implements the operations for
rule analysis, calculation of additional measures of sig-
nificance, rule filtering and sorting, rule clustering and
pruning, and finally, an export of the discovered rules
for use in other systems. Every rule in the rule set con-
sists of the head, the body, and the values of the mea-
sures of significance. The basic measures of signifi-

Table 2
Feature comparison between the reference AMIE+ implementation
and RDFRules

Mining phase Reference
AMIE+ im-
plementation

RDFRules

Data explo-
ration

Not supported Histograms, statistics,
graph filtering by condi-
tions, search in triples

Pre-
processing

Not supported Equifrequent binning for
numerical values

Mining AMIE+ algo-
rithm

AMIE+ algorithm with
extensions (top-k, pattern
language, performance
improvements)

Post-
processing

Not supported Rule clustering, pruning,
sorting and filtering by
patterns

Rule export Text Text and JSON

cance are: rule length, support, head size and head cov-
erage. Other measures may be calculated individually
on user demand within the RuleSet structure. These
measures include: body size, confidence, PCA body
size and PCA confidence. The rules can be filtered and
sorted according to all these measures.

RDFRules supports rule clustering with the DBScan
algorithm [56], using similarity functions proposed in
Section 5.6. The clustering process returns an assign-
ment to a cluster for each rule based on input parame-
ters including selected features, a minimum number of
neighbors to create a cluster, and a minimum similarity
value for two rules to be in the same cluster. The user
can also opt to use similarity counting to determine the
top-k most similar or dissimilar rules to a selected rule.

All the mined rules are stored in the memory, but, as
in the case of the previous data structures, all transfor-
mations defined in the RuleSet are lazy. Therefore, this
structure also allows to cache the rules and transfor-
mations on the disk or the memory for repeated usage.
The complete rule set (or its subsets) can be exported
and saved into a file in a human-readable text format
or in a machine-readable JSON format.

6.7. Comparison to AMIE+ implementation

In the following, we will briefly compare the fea-
tures of the AMIE+ implementation by AMIE+ au-
thors25 with our RDFRules framework. AMIE+ is a

25https://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/amie/

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie/
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Table 3
Used datasets in experiments.

Triples Subjects Predicates Objects

YAGO2 core 948K 470K 36 400K
YAGO3 sample 34K 14K 55 30K
DBpedia 3.8 11M 2.2M 650 1.5M
DBpedia liter-
als sample

85K 13K 286 55.6K

DBpedia ob-
jects sample

121K 13K 325 45K

reference implementation for the algorithmic approach
proposed in [2] and as such it focuses solely on the
modeling phase, and does not offer any functionality
supporting other phases of the data mining process. Ta-
ble 2 provides a comparison between AMIE+ and RD-
FRules in terms of support the respective implemen-
tation provides for individual phases of a typical data
mining task.

7. Experiments

We performed two kinds of experiments. Within
the first group of experiments, we compare our pro-
posed enhancements presented in Section 5 and im-
plemented within our RDFRules framework with the
original implementation of the AMIE+ algorithm. The
second group of experiments is focused on evaluation
of the newly proposed enhancements and algorithms.
In particular, we evaluate discretization of numerical
attributes proposed in Section 5.2, mining across mul-
tiple graphs (Section 5.3), rule patterns (Section 5.4),
top-k approach (Section 5.5), clustering (Section 5.6),
and rules pruning (Section 5.7).

7.1. Experimental Setup

For our experiments, we mainly used the YAGO2
core dataset and YAGO3 core samples of yagoLiter-
alFacts, yagoFacts and yagoDBpediaInstances avail-
able from the Max Planck Institute website26. For more
time consuming tasks we used DBpedia 3.8 with per-
son data and mapping-based properties. For other ex-
periments we used samples of mapping-based literals
and mapping-based objects. The number of triples and
their unique elements for each dataset are shown in Ta-
ble 3.

26https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/downloads/

All the mining tasks are set with the minimum head
size threshold 100 and maximum rule length 3. Unless
explicitly mentioned, the number of used threads is set
to 8. Each experiment is composed of various mining
thresholds, constraints, patterns, the input dataset, and
a selected framework (AMIE+ or RDFRules). Each
experiment was executed 10 times. The experimental
outcome consists of the average mining time together
with the standard deviation and the number of found
rules.

All experiments were launched on the scientific grid
infrastructure of the CESNET MetaCentrum27. This
grid architecture offers up to several hundred CPUs to
be used per machine. For our purpose we used from
1 to 24 cores per experiment on a machine with these
parameters:

– CPU: 4x 14-core Intel Xeon E7-4830 v4 (2GHz),
– RAM: 512 GB,
– OS: Debian 9.

A part of the implemented RDFRules framework is
the Experiments module28, within which all the exper-
iments described below were conducted. Hence, all the
reported experiments can be easily reproduced.

7.2. RDFRules vs AMIE+

In this section we compare our proposed and imple-
mented enhancements of the AMIE+ algorithm with
the original AMIE+ implementation.29

We performed two experiment types: 1) mining
rules only with variables at the subject and object posi-
tions – and 2) mining rules with enabled constants. The
mining process involves the computation of both types
of confidence, i.e. standard confidence and PCA confi-
dence. The results are reported for fixed standard and
PCA confidence threshold 0.1 (MinConf+PCA) and a
various minimum head coverage threshold (MinHC).
RDFRules does not use the perfect rules pruning30

designed in AMIE+; therefore, it is disabled on the
AMIE+ side. The approximation of confidence, pro-
posed in [2] to speed up computation of rule confi-
dence, was disabled in our experiments, because this
option can result in erroneous (incomplete) output as

27https://metavo.metacentrum.cz/en/index.html
28https://github.com/propi/rdfrules/tree/master/experiments
29https://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/amie/
30As an optional feature, AMIE+ stops refining rules as soon as

confidence of the rule reaches 1.0.
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Figure 6. AMIE+ vs RDFRules: Runtime comparison for rule min-
ing with constants for YAGO2 core.

some rules matching the minimum confidence thresh-
old may be removed.

The number of output rules for RDFRules may be
different from AMIE+. This is because AMIE+ does
not return to the output the rules whose all parents have
a higher confidence measure. A parent of the rule is
a rule derived from the given rule by removing any
one atom from its body. RDFRules has this functional-
ity turned off by default; therefore, it can return more
rules. This filtering is performed when the output rules
are returned, and thus it does not affect the reported
mining runtime.

The comparative experiments were launched for the
YAGO2 core dataset and the DBpedia 3.8 dataset.
Some selected tasks, their settings, and results are
shown in Table 4. The Diff column contains the differ-
ence between the runtimes of AMIE+ and RDFRules.
The Rules column contains the number of rules re-
turned by AMIE+ and RDFRules.

7.2.1. RDFRules vs. AMIE+ on YAGO2 Core
Beside the Table 4 the results for the YAGO2 core

dataset are also shown in Figure 7 for mining without
constants, and in Figure 6 for mining with constants.
We observed that for more difficult tasks with lower
head coverage thresholds, which generate a larger set
of rules, RDFRules is faster than the original AMIE+.
On the contrary, for simpler tasks lasting several sec-
onds and without constants, both approaches are al-
most at the same level of mining time.

Our performance improvements proposed in Sec-
tion 5.1 have a considerable impact on mining with
constants. For instance, the mining task with constants
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Figure 7. AMIE+ vs RDFRules: Runtime comparison for rule min-
ing without constants for YAGO2 core.
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Figure 8. Scalability of RDFRules and AMIE+. Mining with con-
stants and with minHC = 0.01.

with minHC = 0.005 has a runtime of over 2 hours,
whereas RDFRules only needs about 10 minutes to
complete the same task.

The experiments also revealed that the original
AMIE+ implementation assigns the individual jobs
less efficiently into multiple threads when mining with
constants. In our experiments, RDFRules used 99%
of the CPU cores, whereas AMIE+ used only around
40%. To have a baseline, we also tried to mine rules
with constants in a single thread. In this setting, RD-
FRules was still almost twice faster than AMIE+ (see
the last row in Table 4). The degree to which the two
systems scale when mining with constants is depicted
in Figure 8.
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Table 4
The mining runtime of AMIE+ and RDFRules with various settings.

YAGO2 core

Task Cores MinHC
MinConf
+PCA

Runtime
Diff

Rules
AMIE+ RDFRules AMIE+ RDFRules

only
with
variables

8
0.005

0.1
54.8 s ± 2.49 s 18.72 s ± 1.04 s -36.08 s 48 48

0.01 15.32 s ± 222.1 ms 15.93 s ± 84.21 ms +613.3 ms 31 31
0.1 9.91 s ± 102.1 ms 11.98 s ± 56.4 ms +2.07 s 10 10

with
constants

8
0.005

0.1

2.12 h ± 3.96 min 10.08 min± 13.38 s -1.96 h 50,254 1,043,539
0.01 13.40 min ± 9.22 s 5.06 min ± 11.56 s -8.33 min 12,803 123,877
0.1 2.87 min ± 5.76 s 36.7 s ± 1.63 s -2.26 min 27 28

1 0.01 27.94 min± 15.38 s 15.47 min± 12.51 s -12.47 min 12,803 123,877

DBpedia 3.8

only with
variables

8
0.01

0.1

> 2 days
15 min 3,430

with approx. 7.14 h -6.89 h 2,884

with constants
> 2 days > 2 days, 27 min (lower-cardinality side of pred.) 386,534

0.15 > 2 days 18.5 h 1,645,758

7.2.2. RDFRules vs. AMIE+ on DBpedia
For the DBpedia 3.8 dataset, we used default set-

tings with minimum head coverage 0.01. The maxi-
mum mining time was set to two days. Each exper-
iment was launched only twice with regard to more
time consuming processes.

For AMIE+, the task of mining rules only with vari-
ables was not completed within two days. Hence, we
tried to enable the confidence approximation where the
task took around 7 hours, whereas RDFRules com-
puted it without any approximation technique in 15
minutes.

The task of rule mining with constants was not fin-
ished within two days for both AMIE+ and RDFRules.
The problem is the combinatorial explosion since the
number of possible rules with constants is enormous
for this task and dataset. Hence, we simplified the
task for RDFRules to instantiate only variables at the
lower-cardinality side of the predicate (this setting is
not available within AMIE+). This task was success-
fully completed within 27 minutes and more than 380k
rules were found (see Table 4). After increasing the
minimum head coverage threshold to 0.15 the mining
task was completed in 18.5 hours for RDFRules where
more than 1.5M rules were found. For AMIE+ (also
with the approximation technique) the task was not fin-
ished in 2 days.

7.3. Evaluation of the Top-k Approach and Rule
Patterns

This section reports on results of experiments of en-
hancements specific to RDFRules: the top-k approach,
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Figure 9. RDFRules rule mining, only with variables (logrules) and
instantiated (const), with vs. without the top-k approach.

confidence calculation, and rule patterns. For the top-
k approach, described in Section 5.5, we launched the
same tasks as in the previous set of experiments with
the difference that the result set contained just the top
100 rules with the highest head coverage. We also tried
to compare confidence computation with vs. without
the top-k approach. Finally, we compare the mining
time with search space constrained with rule patterns
with the time required to mine all rules followed by
subsequent filtering by a particular pattern.

Figure 9 and Table 5 show how the top-k approach
improves the performance of mining if only a subset of
all rules with the highest head coverage is desired by
the user.
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Table 5
The mining runtime of the RDFRules top-k approach.

Task MinHC
Runtime

Top-100 All

only
with
variables

0.005 13.26 s 18.72 s
0.01 12.87 s 15.93 s
0.1 8.320 s 11.98 s

with
constants

0.005 36.80 s 10.08 min
0.01 35.85 s 5.06 min
0.1 23.76 s 36.7 s

Table 6
Runtimes of the confidence computation for 100,000 rules compared
with the top-k approach. Settings are: minCon f = 0.1 for both stan-
dard and PCA, the number of cores is set to 8.

Task
Runtime

Standard PCA

All 1.1 s ± 249 ms 10.2 s ± 733.6 ms
Top-100 294 ms ± 4.8 ms 737 ms ± 141 ms

As described in Section 5.5, the top-k approach
can also be used to speed-up confidence computa-
tion (standard or PCA). Table 6 contains results for
confidence computation (both standard and PCA) of
100,000 rules. This is compared with searching for the
top 100 rules with the highest confidence.

Another experiment was conducted to benchmark
the mining with partial patterns, which were intro-
duced in Section 5.4. We launched two tasks for two
rule patterns. The first one emulates the situation when
the user-specified the head of the rules to be discov-
ered:

(? ? ?)⇒ (? <hasAcademicAdvisor> ?). (4)

The second one emulates the opposite case, when the
user only specifies the body:

(? <hasWonPrize> ?)⇒ (? ? ?). (5)

Both tasks were launched with minHC = 0.01, 8
cores, without confidence counting, and with con-
stants. Table 7 contains the mining time of both cases
compared with the mining time without patterns, but
with subsequent filtering of the desired rules by pat-
terns. Since the rules are refined starting from the right
side (the head) and ending at the leftmost atom in
the body, mining with the pattern depicted in Eq. 5 is
slower than with mining with the pattern depicted in
Eq. 4. Listing 2 shows three examples of rules gener-
ated in these two experiments.

Table 7
Mining with and without rule patterns.

Task Runtime Rules

Mine all + filter by patterns 5.03 min± 10.47 s 137,595
Mine by pattern in Eq. 4 216 ms ± 186 ms 13
Mine by pattern in Eq. 5 14.29 s ± 1.1 s 13

(?b <influences> ?a)⇒ (?a <hasAcademicAdvisor> ?b)
(?b <hasWonPrize> ?c) ∧ (?a <hasWonPrize> ?c)⇒ (?a

<hasAcademicAdvisor> ?b)
(?a <hasWonPrize> <Purple_Heart>)⇒ (?a <hasWonPrize>

<Medal_of_Honor>)

Listing 2. An example of rules mined by RDFRules with patterns.

7.4. Evaluation of the Discretization of Numerical
Attributes

We used the proposed discretization technique (de-
scribed in Section 5.2.2) based on trees of intervals
for the DBpedia literals sample dataset. The minimum
head size threshold and the minimum head coverage
threshold, required for the calculation of MinSuppL
and MinSuppU , were set as for the mining process
(MinHS = 100 with a various head coverage). Af-
ter the discretization step, the input dataset was en-
riched by new triples composed of constructed inter-
vals. Here, we can observe a considerable number of
newly generated triples.

The pre-processed input KG was then used in the
mining process. First, we observed the number of
mined rules for both variants of mining from the input
KG: with vs. without the pre-processing.

Next, we evaluated the discretization on the task of
knowledge graph completion, where we again com-
pared the results generated with and without the dis-
cretization. The output rules were filtered by the min-
imum PCA confidence threshold set to 0.8. Conse-
quently, all filtered rules were used to predict triples
(explained in Section 3.3).

From the predicted triples T , we only took such
triples 〈s, p, o〉 ∈ T ′ which had been missing in the
KG and there was no other triple 〈s, p, o′〉 ∈ KG:

T ′ = {t ∈ T : t /∈ KG ∧ @〈s, p, o′〉 ∈ KG}.

Based on this prediction, the input KG can be enriched
with those missing triples whose prediction has the
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Table 8
Data size of the DBpedia literals sample dataset before and after the
discretization process using trees of intervals.

# Predicates # Triples

Before
discretization

All Num.
85,075

286 89

MinHC All New # Triples Runtime

0.01 475 189 149,438 1.3 s
0.02 439 153 151,333 726 ms
0.05 379 93 139,572 367 ms
0.1 349 63 130,423 323 ms
0.2 325 39 121,237 284 ms
0.3 314 28 118,708 252 ms

PCA confidence greater than or equal to 80%.31 The
input rules for prediction can be generated based on
rules mined from unpreprocessed data or from data
preprocessed with discretization. We compared the
number of predicted triples under both scenarios (with
vs. without discretization).

Table 8 summarizes the results from the various dis-
cretization processes. The header contains the number
of all triples, all predicates, and all predicates that had a
numerical range before the discretization process. The
following rows show how many new triples and pred-
icates were created after the discretization using the
minimum head coverage threshold.

Table 9 shows that after the discretization, the sys-
tem discovered many more rules (ca. 300 times more)
and predicted many more new triples, even for higher
thresholds, where originally no rules were found. For
example, we predicted the following new triple, which
is missing in the original KG:

〈dbr:Owensboro_Kentucky,

dbo:populationTotal, "[0;499k)"〉.

This triple was generated based on the following rule
(with head coverage 0.2 and PCA confidence 0.81),
which was only discovered after the discretization pro-
cess:

(?a dbo:areaTotal "[440k;134M)")⇒

(?a dbo:populationTotal "[0;499k)").

31The filtering of the output triples by the above formula assures
that the Partial Completeness Assumption is preserved not only at
the level of the rule (which has to satisfy the PCA confidence crite-
rion as whole) but also at the level of the individual triples supplied
to the KG.

The newly obtained fact is true, since the Owensboro
city in Kentucky has around 60 thousand inhabitants.

It should be noted that the discretization does not
only have benefits, but also extends the mining time
due to the expansion of the hypothesis space. In the
performed experiment, the mining time was up to six
times longer.

7.5. Evaluation of Mining Across Multiple Graphs

RDFRules is able to merge multiple RDF KGs to-
gether, resolving their integration by the owl:sameAs
predicate, which is described in Section 5.3. This link-
ing is taken into account in the mining phase; there-
fore, discovered rules can contain atoms from different
graphs.

We launched the rule mining process with mini-
mum head coverage threshold 0.01 and enabled con-
stants at the object position, separately for the YAGO3
sample and for the unified DBpedia sample (literals
+ objects). Subsequently, we merged the YAGO and
DBpedia graphs using the yagoDBpediaInstances sub-
set, containing the owl:sameAs linking, which is also
part of the YAGO3 sample. Finally, we launched the
rule mining process for the whole dataset consisting of
these two different KGs.

The number of output rules from all tasks (YAGO,
DBpedia, YAGO+DBpedia) is written in Table 10.
For the merged YAGO+DBpedia dataset, a large num-
ber of new rules (998,240) containing atoms from
both KGs were discovered. The mining time for
YAGO+DBpedia is slightly longer (ca. 1.5x) than the
sum of the mining times for each KG separately.

7.6. Evaluation of Clustering

The goal of clustering is generally to find cluster as-
signment minimizing the inter-cluster similarities and
maximizing the intra-cluster similarities. For our ex-
periment, the clustering was based on the rule content
similarity function described in Section 5.6. The eval-
uation was focused on the quality of cluster assign-
ments.

First, we needed a set of rules as an input for the
clustering process. We used the YAGO2 core KG for
mining the top 10,000 rules with constants (minimum
head coverage threshold 0.01). Then, for the output
rules, we launched clustering with the DBScan algo-
rithm [56] with the minimum number of neighbours
(region density MinPts) fixed to 1 for all experiments.
The second element of the setting was the minimum
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Table 9
Output comparison of results after mining with or without the discretization phase.

MinHC
# Rules # Rules PCA > 0.8 # New triples Runtime

Original Discretized Original Discretized Original Discretized Original Discretized

0.01 938 283,263 584 81,961 965 2,329 5.970 s 22.78 s
0.02 147 71,105 56 15,188 878 2,166 2.055 s 12.14 s
0.05 20 10,348 7 1,924 689 1,373 1.399 s 6.251 s
0.1 6 1,981 2 327 35 185 1.110 s 3.766 s
0.2 1 283 0 44 0 49 903.4 ms 2.927 s
0.3 0 64 0 9 0 11 777.1 ms 1.749 s

Table 10
Rules and runtimes comparison after mining for merged and sepa-
rated KGs.

Dataset # Rules Runtime

YAGO3 core sample 1,806,326 29.8 s
DBpedia sample (objects+literals) 88,926 29.38 s

YAGO+DBpedia 2,893,492 1.5 min

similarity threshold used as the inverse distance radius
ε parameter of DBScan. For ε, we varied the threshold
value.

Once the rules had been assigned to the clusters,
it was possible to evaluate the quality of the assign-
ment based on the overlap of clusters (inter-cluster
similarity), and the similarities among rules inside a
cluster (intra-cluster similarity). Let Rc be the set of
rules in the cluster c. Then the clustering quality index
(QI) is evaluated as the average difference between the
intra-cluster similarity of any cluster c, expressed as
∆Rc , and the maximum inter-cluster similarity between
cluster c and another cluster, e.g. d, different from c,
expressed as δ(Rc,Rd):

QI =
1

n

n∑
i=1

Å
∆Ri −max

j 6=i
(δ(Ri,R j))

ã
,

where n is the number of clusters.
The proposed QI is inspired by the average Silhou-

ette Index [57]. The difference is that we take into ac-
count rule similarities instead of distances and the in-
tra and inter cluster similarities are computed with the
more straightforward way without having to calculate
similarities among all rules across all clusters, which
is very time consuming. The range of values of the QI
is from -1 to 1 where -1 and 1 mean the worst and the
best case of the clustering respectively.

In the rest of this section we will denote the subset of
the input KG containing exactly those (distinct) triples
that instantiate any atom from the body or from the
head of a rule as the matching subgraph of this rule.

Intra-cluster Similarity Let Ti ⊆ KG be the match-
ing subgraph of rule ri ∈ Rc, and T = (T1, . . . ,T|Rc|).
Then the intra-cluster similarity for the ruleset Rc

is calculated as the weighted average of the number
of occurrences of individual triples in matching sub-
graphs in T :

∆Rc =
1∑

t∈Θ ωt

∑
t∈Θ

(
ωt

|Rc|
∑
Ti∈T

[t ∈ Ti]

)
,

where [·] denotes Iverson bracket notation32, Θ is the
set of all unions of sets in T :

Θ = T1 ∪ . . . ∪ T|Rc|,

and ωt is the weight of the triple t ∈ Θ.
The weight is important since more general rules

can match many more triples than more specific rules.
For example, the following rule

r1 : (?a <wasBornIn> ?b)⇒ (?a <diedIn> ?b)

matches more triples than

r2 : (?a <wasBornIn> <Prague>)

⇒ (?a <diedIn> <Prague>).

The second rule r2 is derived from the first rule r1;
therefore, the user would expect these two rules to be
assigned to the same cluster. The problem is that many
triples instantiating the atoms of r1 do not instantiate
the atoms of r2. Hence, these triples have only one oc-
currence, namely in the set T1, which can significantly
decrease the intra-cluster similarity. To address this,
the weight of a triple instantiating the more specific
rule should be greater than the weight of a triple only
instantiating the general rule. For this purpose, we de-
fined weight ωt for triple t as follows:

ωt = 1 + max
Ti∈T
|Ti| ·

∑
Ti∈T

[t ∈ Ti]−
∑

Ti∈T,t∈Ti

|Ti|.

32[P] = 1 if P is true, [P] = 0 if P is false.
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Table 11
Results of clustering for 10,000 rules by the DBScan algorithm
(MinPts = 1) and varying minimum similarity ε.

MinSim
ε

# Clus-
ters

QI Avg
intra

Avg
inter

Runtime

0.3 4 0.561 0.561 0 6.9 min
0.4 6 0.621 0.635 0.005 7.2 min
0.5 7 0.639 0.648 0.005 7 min
0.6 15 0.672 0.827 0.014 7.4 min
0.7 35 0.478 0.882 0.028 6.6 min
0.8 38 0.414 0.861 0.037 4.7 min

Inter-cluster Similarity Let Θ1 and Θ2 be sets of
triples instantiating the atoms of rules in clusters R1

and R2. Then the inter-cluster similarity is calculated
as the number of intersections of Θ1 and Θ2 normal-
ized by the size of the smallest set.

δ(R1,R2) =
|Θ1 ∩Θ2|

min(|Θ1|, |Θ2|)
.

Results For each clustering task, beside the QI, we
calculated the average intra-cluster and inter-cluster
similarity. All these measures, along with clustering
runtimes and the number of created clusters, are shown
in Table 11.

The table shows that the average intra-cluster sim-
ilarity is much greater than the average inter-cluster
similarity, which is desired. In our experiments, the
highest value of the QI was obtained for MinSim
ε = 0.6. This setting generated 15 clusters. Further-
more, in this experiment, we demonstrated that rules
clustered by their content similarity, proposed in Sec-
tion 5.6, have small overlaps of matching subgraphs
from different clusters and, conversely, higher overlaps
of matching subgraphs within the same cluster.

7.7. Evaluation of Rule Pruning

In this section, we demonstrate the effectiveness of
the pruning technique described in Section 5.7 on the
YAGO2 core dataset. First, we mined top-k rules with
different values of k and with the minimum standard
confidence threshold set to 0.1. After that, we sorted
rules by the confidence measure in descending order
and applied the pruning step.

All results are summarized in Table 12. We com-
pared the number of output rules with the number of
rules after pruning. Notice that the number of rules af-
ter pruning increases logarithmically compared to the
sizes of the set of rules before pruning. The table also
shows that the number of all correctly predicted triples

Table 12
The number of rules and correctly predicted triples, before and after
pruning for YAGO2 core. The Runtime column shows the time spent
by pruning.

Top-k
# Rules # Triples

Runtime
Before After Before After

500 350 89 16,824 16,824 478 ms
1,000 764 120 19,091 19,091 528 ms
2,000 1,604 166 19,252 19,252 691 ms
4,000 3,218 228 26,230 26,230 1.23 s
8,000 5,887 345 27,205 27,205 2.21 s
16,000 11,427 466 28,480 28,480 4.17 s
32,000 21,795 653 31,338 31,338 8.24 s

from the input KG by rules before and after pruning is
still the same.

8. Conclusion

In this paper we have presented a set of extensions
and enhancements to AMIE+, a state-of-the-art ap-
proach for mining Horn rules from RDF knowledge
graphs. The primary aim of our work was to contribute
to resolving the main challenge related to association
rule learning (not only) from knowledge graphs – mak-
ing it easy for the user to extract meaningful rules,
without having to repeatedly change the mining pa-
rameters due to either a lack of results or a combina-
torial explosion thereof. By giving the user the option
to automatically group similar rules or to remove re-
dundant rules, the result of rule learning remains ex-
plainable even when tens of thousands of rules are dis-
covered. Other presented extensions allow for mining
rules spanning multiple graphs, support for numeri-
cal data, and substantial performance enhancements in
some special cases, such as when mining with con-
stants or when mining with many CPU cores.

In a number of experiments, we have shown per-
formance improvements of the individual extensions.
More than an order of magnitude improvement com-
pared to AMIE+ has been observed when mining for
rare patterns, e.g., anomalies, which requires a very
low head coverage threshold.

A reference implementation of the proposed ap-
proach is available as open source hosted on GitHub33.
This software integrates several APIs (Java API, Scala
API, and RESTful API) with a graphical user interface.

33https://github.com/propi/rdfrules

https://github.com/propi/rdfrules
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The project also contains the source code required for
a replication of the benchmarks presented in this paper.

A promising direction for extending RDFRules is
that of adding support for RDF schemas and ontolo-
gies, which would involve resource types with hier-
archies into the mining process. Another challenging
problem is that of matching the capabilities of the new
generation of ILP systems, which, for example, sup-
port predicate invention and recursion [58]. We should
also carry out comparative experiments with AMIE
3 as the very recently announced AMIE+ successor
(thus being a ‘close sibling’ of RDFRules). Although
the system currently supports multi-threading on a sin-
gle machine, we would also like to add support for
distributed mining and memory scaling on multiple
nodes. Finally, RDFRules produces logical rules with
a possibly complex structure, which may be found dif-
ficult to understand by some users. Thus, research into
the human-perceived interpretability of logical rules
is urgently needed. From the usability perspective, a
valuable addition could be the addition of automatic
tuning of mining thresholds, possibly by adapting one
of the algorithms proposed for tabular data in [59].
In terms of applications, we consider investigating to
what extent RDFRules can complement the recent gen-
eration of ILP systems such as Metagol [60] or MIGO
[61] in the domain of learning game strategies. Specifi-
cally, we consider using RDFRules for learning an ini-
tial set of rules, leveraging the speed of its base asso-
ciation rule learning approach, and then refining these
rules in the established ILP frameworks.
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